

Java Interview Notes

by Jolly

Copyright © 2016 by Jolly M.
All rights reserved, including the right to reproduce this book, or any portions of it,

in any form.

CONTENT
Introduction
Book Introduction

Java Fundamentals
Java Program Anatomy
Java Program and JVM
Data Types
Naming Convention
Object class
static
final
static initialization block
finally()
finalize()
Widening vs Narrowing Conversion
getters and setters
varargs vs object array
default interface method
static interface method
Annotations
Preferences
Pass by value or reference
Access Modifiers

Object Oriented Programming
Polymorphism
 Parametric Polymorphism
 Subtype Polymorphism
Overriding
 @Override
Overloading
Abstraction
Inheritance

Composition

Fundamental Design Concepts
DI vs IoC
Service Locator
Diamond Problem
Programming to Interface
Abstract class vs Interface
Internationalization and Localization
Immutable Objects
Cloning

Data Types
NaN
EnumSet
Comparing Data Types
 Float comparison
 String comparison
 Enum comparison
enum vs public static int field
Wrapper Classes
Auto boxing and Auto unboxing
BigInteger and BigDecimal

Strings
String Immutability
String Literal vs Object
String Interning
String Pool Memory Management
Immutability - Security issue
Circumvent String immutability
StringBuffer vs StringBuilder
Unicode

Inner Classes
Inner Classes

Static Member Nested Class
Local Inner Class
Non-Static Nested Class
Anonymous Inner Class

Functional Programming
Lambda Expression
Functional Interface
Pure Functions
Fluent Interface

Generics
Generics
Generics-Type Wildcards
Generics - Method
Java Generics vs Java Array
Generics - Type Erasure
Co-variance
Contra-variance
Co-variance vs Contra-variance

Collections
Collection design aspects
Collection Fundamentals
Collection Interfaces
Collection Types
 Set
 List
 Queue
 Map
Algorithms
Comparable vs Comparator
hashCode() and equals()
HashTable vs HashMap
Synchronized vs Concurrent Collections
Iterating over collections

fail-fast vs fail-safe

Error and Exception
Exception
Checked vs Unchecked vs Error
Exception Handling Best Practices
try-with-resource

Threading
Threading Terms
Thread Lifecycle
Thread Termination
Runnable vs Thread
Runnable vs Callable
Daemon Thread
Race Condition and Immutable object
Thread Pool

Synchronization
Concurrent vs Parallel vs Asynchronous
Thread Synchronization
Synchronized method vs Synchronized block
Conditional Synchronization
Volatile
static vs volatile vs synchronized
ThreadLocal Storage
wait() vs sleep()
Joining Thread
Atomic Classes
Lock
ReadWriteLock
Synchronizers
 Barrier
 Semaphore
 Phaser
 Exchanger

 Latch
Executor Framework
 Executor Service
Fork-Join Framework

Reflection
Purpose of reflection
Drawbacks of Reflection

Data Interchange
JSON

Memory Management
Stack vs Heap
Heap fragmentation
Object Serialization
Garbage Collection
Memory Management
Weak vs Soft vs Phantom Reference

Unit Testing
Why unit testing?
Unit vs Integration vs Regression vs Validation
Testing private members
Mocking and Mock Objects

Java Tools
Git
Maven
Ant
Jenkins

INTRODUCTION

Introduction

Java Interview Notes cover topics that are frequently discussed
during Java technical interview round, along with interview questions
for each topic. This book also contains lots of code snippets and
figures to explain topics.

To be confident in an interview, thorough understanding of software
design and language concepts is very important, because during an
interview same question can be asked in many different ways.

Interviewers are interested in hearing not just the correct answer, but
also your opinion and thoughts about the topic. Your approach
towards understanding the questions and sharing your thoughts
plays an extremely important role in an interview success.

Confidence to face such interview can only be achieved when you
spend really good amount of time coding, reading technical topics
and discussing this with peers. There is no other shortcut available.

I hope this book helps to prepare you not only for your next
interview, but also for your day-to-day software development task.

All the best!!!

JAVA
FUNDAMENTALS

Java Program Anatomy

The following code snippet depicts the anatomy of simple Java
program.

Package - Represents logical grouping of similar types into
namespaces. It also prevents naming collision and provides
access protection.
Import - Imports the package, so that classes can be used in the
code by their unqualified names.
Class - Represents a type template having properties and
methods.
Field - Represents a member used for holding values.
Method - Represents an operation/behaviour of the class.
Modifier - Specifies access control level of a class and its
members.
Parameter - Specifies the variable declared in the method
definition.
Argument - Specifies the data passed to the method parameters.

Questions
What is package?
Why do you need to import packages?
Why do you need to specify access modifiers?
What is static import?

static import enables access to static members of a class
without need to qualify it by the class name.

What is the difference between argument and parameter?

Compiling and Executing Java Code in
JVM

Java program compilation and execution steps

1. Java Compiler compiles the Java source code (.java file) into a
binary format known as bytecode (.class file). Java bytecode is
platform independent instruction set, which contains instructions
(opcode) and parameter information.

2. Bytecode is translated by the Operating System specific Java
Virtual Machine (JVM) into the platform specific machine code.

3. Class loader in JVM loads the binary representation of the
classes into memory.

4. Execution engine in JVM executes the byte code and generates
Operating System specific machine instructions. These machine
instructions are executed directly by the central processing unit
(CPU).

Questions
Explain the process of Java code compilation and execution?
What is bytecode?
What is the difference between bytecode and source code?
What is machine code?
What is the difference between bytecode and machine code?
What is JVM? Is it same or different for different Operating
Systems?
What are the major components of JVM?
What is the role of class loader in JVM?
What is the role of Execution Engine in JVM?
What are machine instructions?

Data Types

Primitive Types

Primitive types are byte, boolean, char, short, int, float, long and
double.
Primitive types always have a value; if not assigned, will have a
default value.
A long value is suffixed with L (or l) to differentiate it from int.
A float value is suffixed with F (or f) to differentiate it from
double. Similarly double is suffixed with D (or d)
A char is unsigned and represent an Unicode values.
When a primitive type is assigned to another variable, a copy is
created.

Reference Types

All non-primitive types are reference types.
Reference types are also usually known as objects. A reference
type also refers to an object in memory.
Objects of reference type will have null as default value, when
it's unassigned.
Objects have variables and methods, which define its state and
the behaviour.
When a reference is assigned to another reference, both points
to the same object.

Questions
What are primitive data types?

If a variable of primitive data type is not assigned, what does it
contain?
Why do we suffix L with long, F with Float and D with double?
What happens when you assign a variable of primitive data type
to another variable of same type?
What are reference data types?
What happens when you assign a variable of reference data
type to another variable of same reference type?
What are the differences between primitive data types and
reference data types?
What are the purposes of variables and methods in a reference
type?
If a variable of reference data type is not assigned, what does it
contain?

Object class

Every Java class is inherited, directly or indirectly, from
java.lang.Object class, which also means that a variable of Object
class can reference object of any class.

Due to inheritance, all the following java.lang.Object class methods,
which are not final or private, are available for overriding with class
specific code.

hashCode() - returns hash-code value for the object.
equals() - compares two objects for equality using identity (==)
operator.
clone() - creates copy of object. Overriding class should inherit
Cloneable interface and implement clone() method to define the
meaning of copy.
toString() - returns string representation of the object.
finalize() - called by the Garbage Collector to clean up the
resources. java.lang.Object's implementation of finalize() does
nothing.

Questions
What is the base class for all Java classes?
What are the different methods of java.lang.Object class, which
are available for overriding in the derived class.
What happens if your class does not override equals method
from the java.lang.Object class?

The equals() method in java.lang.Object class compares
whether object references are same, and not the content.
To compare content, you need to override equals() method.

What is the purpose of clone() method?

Why should the overriding class define the meaning of clone()
method?
What happens if overriding class does not override clone()
method?

In case if an object contains references to an external
objects, any change made to the referenced object will be
visible in the cloned object too.

Access Modifiers

Access modifiers determine the visibility rules whether other classes
can access a variable or invoke a method.

At class level, you can either use public modifier or no modifier.

For class members, you can use one of the following access
modifiers.
private - External classes cannot access the member.
protected - Only sub-classes can access the member.
public - All classes in the application can access the member.
no modifier - All classes within the package can access this member.

The access modifier in the overriding methods should be same or
less restrictive than the overridden method.

Optional static and final keywords are frequently used along with the
access modifiers.

Questions
What is the purpose of access modifier?
Is there any difference between the list of access modifiers
available for a class and for its members?
What is the scope of private, protected and pubic access
modifiers?
What happens when no access modifier is specified with the
class?
If sub-class exists in a different package, does it still has
visibility to the protected members of the super-class?
Why should the member access modifier in the derived class be
less restrictive than the base?

As per inheritance concept, you should be able to use sub
class object with super class reference. This will not be

possible if sub class member is declared with more
restrictive access modifier.

What should be the criteria to decide an access modifier for a
class?

You should use the most restrictive access modifier to
ensure security and to prevent any misuse.

static

static class
Only nested/inner classes can be defined as static and not the outer
class.

static variable and method
When static keyword is used with the variables and the methods, it
signifies that these members belongs to the class and these
members are shared by all the objects of the class. Static members
does not have a copy and are stored only at a single location is
memory. These members should be accessed using class name.

Static method does not have access to instance methods or
properties, because static members belong to the class and not the
class instances.

Questions
What are static classes?
Can any class be declared as static class?
What are static methods?
What are static variables?
Who owns the class members that are static? How is that
different for non-static members?
How should you access class members that are static?
Does static method has access to an instance member? Why?

final

final Class
final class cannot be extended, which makes the class secure and
efficient.

final Method
final method cannot be overridden, which prevents any possibility of
introducing any unexpected behaviour to the class.

final Variable
final variable reference cannot be changed, but the content of the
mutable object, that the final variable is referencing, can be changed.

blank final variable - variable which is not initialized at the point of
declaration.

Notes
blank final variable needs to be initialized in the constructor of
the class.
final variables are like immutable variables, so computations
related to final variables can be cached for optimization.

Questions
Explain final class?
What are the benefits of declaring a class final?
Explain final method?
What are the benefits of declaring a method final?
Explain final variable?
What are the benefits of declaring a variable final?

When you declare a variable final, can you change the content
of the object it's referencing?
When you declare a variable final, can you change it to
reference another object?
What is blank final variable?
How does declaring a variable as final helps with optimization?

static Initialization Block

static initialization block is generally used to ensure that all the
required class resources (like drivers, connection strings, etc.)
are available before any object of the class is used.
static block does not have access to the instance members.
static block is called only once for a class.
A class can define any number of static blocks, which gets
called in order of their definition in the class.
You can only throw unchecked exception from a static block.

In this code example static initialization block creates connection
string only once for the class.

private static String connectionString;
static {
 connectionString = getConnectionSting();
}

Questions
What is static initialization block?
What is the primary purpose of the static initialization block?
What kind of things should you do in the static block?
Can you access instance members from static initialization
block? Why?
Does static initialization block gets called every time when an
instance of the class is created?
How many static blocks can be defined in a class?
When multiple static blocks are defined, what is the criterion for
their order of execution?
Can you throw exception from static initialization block? What
type?

finally

The primary purpose of a finally block is to ensure that the
application is brought back to a consistent state, after the operations
performed in the try block. Within the finally block, usually resources
like streams and database connections can be closed to prevent
leaks.

InputStream is = null;
try{
 is = new FileInputStream("input.txt");
}
finally {
 if (is != null) {
 is.close();
 }
}

finally block execution

Compiler does all in its power to execute the finally block, except in
the following conditions:

If System.exit() is called.
If current thread is interrupted.
If JVM crashes.

Return from finally

You must never return from within the finally block. If there is a return
statement present in the finally block, it will immediately return,
ignoring any other return present in the function.

Questions
How do you guarantee that a block of code is always executed?
What kind of things should you do in a finally block?
What kind of things should you do in a catch block?
Does finally block always execute? What are the conditions
when the finally block does not execute?
Should you ever return from the finally block? Why?

finalize()

When the Garbage Collector determines that there in no reference to
an object exist, it calls finalize() on that object; just before removing
that object from memory.

finalize() will not be called if an object does not become eligible for
garbage collection, or if JVM stops before garbage collector gets
chance to run.

finalize() could be overridden to release the resources like: file
handles, database connections, etc.; but you must not rely on
finalize() method to do so, and release such resources explicitly.

There is no guarantee that finalize() will be called by the JVM, and
you should treat finalize() method only as a backup mechanism for
releasing resources. Where possible, use try-with-resource construct
to automatically release the resources.

If an uncaught exception is thrown by the finalize() method, the
exception is ignored before terminating the finalization.

Questions
What is finalize method in Java?
When does the finalize method gets called?
Who calls the finalize method?
What kind of things can be done in the finalize method?
Should you explicitly call finalize method to release resources?
Why?
What are some alternate mechanisms that can be used to
release system resources?
What happens if an unhanded exception is thrown from the
finalize method?

Widening vs Narrowing Conversions

Widening Conversions

Widening conversions deals with assigning an object of sub class
(derived class) to an object of super class (base class). In the
example below, Car is derived from Vehicle.

Car car = new Car();
Vehicle vehicle = car;

Narrowing Conversions

Narrowing conversions deals with assigning an object of super class
(base class) to an object of sub class (derived class). An explicit cast
is required for conversion. In the example below, Bike is derived from
Vehicle.

Vehicle vehicle = new Vehicle();
Bike bike = (Bike)vehicle;

Questions
What is widening conversion?
What is narrowing conversion?
Is there any possibility of loss of data in narrowing conversion?

getters and setters

The following code demonstrates the usage of getter and setter.

public class Person {

 private String name;

 public String getName() {
 return StringUtils.capitalize(name);
 }

 public void setName(String name) {
 if(name.isEmpty()){
 System.out.println("Name string is empty");
 //throw exception
 }
 this.name = name;
 }
}

Benefits of using getter and setter

Validations can be performed in the setter or can be added later
when required.
Value can have alternative representation, based on internal
(storage) or external (caller's) requirement.
Hides the internal data structure used to store the value.
Internal fields can be changed, without requiring changing any
user of the code.
Encapsulates the internal complexity in retrieving or calculating
the value.
Provides ability to specify different access modifiers for getter
and setter.
Provides ability to add debugging information.

Can be passed around as Lambda expressions.
Many libraries like mocking, serialization, etc. expects
getters/setters for operating on the objects.

Questions
Why do you need getters and setters when you can directly
expose the class field?
Explain few benefits of using getters and setters?

varargs vs object array

varargs parameters allows zero or more arguments to be passed to
the method; whereas, an object array parameter cannot be called
with zero arguments.

varargs
public static int getCumulativeValue(int... values){
 int sum = 0;
 for(int value : values){
 sum += value;
 }
 return sum;
}

object array
public static int getCumulativeValues(int[] values){
 int sum = 0;
 for(int value : values){
 sum += value;
 }
 return sum;
}

varargs can only be the last parameter in the method; whereas,
an object array can be defined in any order.
Both varargs and object array are handled as array within a
method.
Though varargs are not very popular, but it can be used in any
place where you have to deal with indeterminate number of
arguments.

Questions

What is varargs?
What are the differences between varargs and object array?
Can you call a method with zero arguments, which is defined
with a varargs as its only parameter?
Can you overload a method that takes an int array, to take an int
varargs?
What are the different scenarios where you can use varargs?

Default Interface Method

Default interface methods are directly added to an Interface to
extend its capabilities.
Default interface method can be added to enhance an Interface
that is not even under your control.
It does not break any existing implementation of the interface it
is added to.
Implementing class can override the default methods defined in
the interface.
Default method is also known as Defender or Virtual extension
method.

In this code example default Interface method, getAdditonSymbol(),
is added to an existing interface Calculator.

public interface Calculator {
 public <T> T add(T num1, T num2);
 default public String getAdditionSymbol(){
 return "+";
 }
}

Limitations with Default method

If the class inherits multiple interfaces having default methods
with same signature, then the implementing class has to provide
implementation for that default method to resolve ambiguity.
If any class in the inheritance hierarchy has a method with the
same signature, then default methods become irrelevant.

Default method vs Abstract method

Following are couple of minor differences:

Abstract methods allows defining constructor.
Abstract methods can have a state associated.

With Default method - Abstract class vs Interface

With the introduction of default methods, now even the Interfaces
can be extended to add more capabilities, without breaking the
classes that inherit from the Interface.

Questions
What are default interface methods?
What are the benefits of default interface methods?
Can you add default interface methods to enhance an interface
that is not directly under your control?
Can you override the default interface methods to provide
different implementation?
What happens when a class inherits two interfaces and both
define a default method with the same signature?
How defining a default method in an interface is different from
defining the same method in an abstract class?

Static Interface Method

Static Interface methods are directly added to an interface to
extend its capabilities.
Static Interface methods are generally used to implement utility
functions like: validations, sorting, etc.
Static interface methods are also used when you want to
enforce specific behaviour in the classes inheriting the Interface.
Implementing class cannot override the static methods defined
in the interface it is inheriting.
Static Interface method can even be added to enhance an
interface which is not under your control.
Similar to default Interface method, even the static interface
method does not break any existing implementation of the
interface.

In this code example, static Interface method,
getUtcZonedDateTime(), is added to an existing interface
DBWrapper.

public interface DBWrapper {
 static ZonedDateTime getUTCZonedDateTime(
 Instant date){
 ZoneId zoneId =
 TimeZone.getTimeZone("UTC").toZoneId();
 ZonedDateTime zonedDateTime =
 ZonedDateTime.ofInstant(date, zoneId);
 return zonedDateTime;
 }
}

Questions
What are static interface methods?
Where can you use static interface methods?

Can you override static interface methods?
What is the difference between static and default interface
methods?
Can you add static interface method to enhance an interface,
which is not directly under your control?
What happens if a class inherits two interfaces and both define
a static interface method with the same signature?

Annotations

An annotation associates metadata to different program elements.
Annotations may be directed at the compiler or at runtime
processing.

Annotation metadata can be used for documentation, generating
boilerplate code, performing compiler validation, runtime processing,
etc. Annotations do not have any direct effect on the code piece they
annotate.

We can apply annotations to a field, variable, method, parameter,
class, interface, enum, package, annotation itself, etc.

Usage
User defined annotations are directly placed before the item to be
annotated.

@Length(max=10, min=5)
public class ParkingSlot {
// Code goes here
}

Few built-in annotations
@Deprecated - signifies that method is obsoleted.
@Override - signifies that a superclass method is overridden.
@SupressWarnings - used to suppress warnings.

Questions
What are annotations?
Where can you use annotations?

What are the different Java entities where you can apply
annotations?

Preferences

In Java, the Preferences class is used for storing user and system
preferences in hierarchical form. Preferences class abstracts out the
process of storage. It stores the preferences in a way that is specific
to the Operating System: preferences file on Mac, or the registry on
Windows systems. Though the keys in preferences are Strings but
value can belong to any primitive type.

Applications generally use Preferences class to store and retrieve
user and system preferences and configuration data.

Questions
What is the use of Preferences class?
What are the types of information that can be stored with the
Preferences?
While using Preferences class, do you have to handle the
internal format required by the Operating System to store the
preferences?

Pass by value or Pass by Reference

In Java - method arguments, primitive or object reference, are
always passed by value and access to an object is allowed only
through a reference and not direct. While passing an object to a
method, it's the copy of the reference that is passed and not the
object itself. Any changes done to the object reference, changes the
object content and not the value of reference.

Questions
What is the difference between pass by value and pass by
reference?
How are the reference type arguments passed in Java; by
reference or by value?
If a copy of reference is passed by value, how can the method
get access to the object that the reference is pointing to?
If a copy of reference is passed by value, can you change the
value of reference?

Naming Convention

Camel Case vs Pascal Case

Camel Case is practice of writing composite words such that the first
letter in each word is capitalized, like BorderLength; it is also known
as Pascal Case or Upper Camel Case. But in programming world,
Camel case generally starts with the lower case letter, like
borderLength; it is also known as Lower Camel Case. For this
discussion, let's consider the format BorderLength as Pascal Case
and the format borderLength as Camel Case.

Naming Convention

Naming convention is a set of rules that govern the naming for the
identifiers representing interface, class, method, variables, and other
entities. Choice and implementation of naming conventions often
becomes matter of debate.

Standard naming convention improves the code readability, which
helps in review and overall understanding of the code.

Interface
Name should be Pascal Case.
Name should be an adjective if it defines behaviour, otherwise
noun.

public interface Runnable

Class
Name should be Pascal Case.
Name should be a noun, as a class represents some real world
object.

public class ArrayList

Method
Name should be Camel Case.

public boolean isEmpty()

Variable
Name should be Camel Case.

private long serialVersion = 1234L;

Constants
Name should be all uppercase letters. Compound words should
be separated by underscores.

private int DEFAULT_CAPACITY = 10;

Enum
Enum set name should be all uppercase letters.

public enum Duration {
 SECOND, MINUTE, HOUR
}

Acronyms
Even though acronyms are generally represented by all Upper
Case letters, but in Java only the first letter of acronyms should
be upper case and rest lower case.

public void parseXml(){}

Questions
What is naming convention?
Why do you need naming convention?
What is the difference between Camel Case and Pascal Case?
What is the difference between Upper Camel Case and Lower
Camel Case?
Explain naming convention for interface, class, method,
variable, constant, enum and acronyms?

OBJECT
ORIENTED

PROGRAMMING

Polymorphism

Polymorphism is an ability of a class instance to take different forms
based on the instance its acting upon.

Polymorphism is primarily achieved by subclassing or by
implementing an interface. The derived classes can have its own
unique implementation for certain feature and yet share some of the
functionality through inheritance.

Behaviour of object depends specifically on its position in the class
hierarchy.

Consider you have a Furniture class, which has addLegs() method;
and a Chair and a Table class, both extend Furniture class and have
their own implementation of addLegs() method. In this situation, the
implementation of addLegs() method that gets called is determined
by the runtime, depending whether you have a Chair or a Table
instance.

public abstract class Furniture {
 public abstract void addLegs();
 public void print(String message){
 System.out.println(message);
 }
}

class Chair extends Furniture {
 @Override
 public void addLegs() {
 print("Chair Legs Added");
 }
}

class Table extends Furniture{
 @Override
 public void addLegs() {
 print("Table Legs Added");

 }
}

Furniture furniture = new Chair();
// This prints "Chair Legs Added"
furniture.addLegs();

furniture = new Table();
// This prints "Table Legs Added"
furniture.addLegs();

Benefits of polymorphism

The real power and benefit of polymorphism can be achieved when
you can code to an abstract base class or an interface. Based on the
context, polymorphism enables the selection of most appropriate
class implementation. Not only in production code, it also paves way
to have an alternate implementation for testing.

Questions
What is Polymorphism?
What are different ways to achieve polymorphism?
How is inheritance useful to achieve polymorphism?
What are the benefits of polymorphism?
How is polymorphism concept useful for unit testing?

Parametric polymorphism

In Java, Generics facilitates implementation for Parametric
polymorphism, which enables using the same code implementation
with the values of different types, without compromising on compile
time type safety check.

In the example below, we added an upper bound to type parameter
T such that it implements an interface that guarantees
getWheelsCount() method in the type T.

interface Vehicle {
 int getWheelsCount();
}

class Car<T extends Vehicle> {
 private T vehicle;
 public Car(T vehicle) {
 this.vehicle = vehicle;
 }
 public int getWheelsCount() {
 return vehicle.getWheelsCount();
 }
}

It takes parameter of type T and returns count of wheels, without
worrying about what type T actually is.

Questions
What is Parametric Polymorphism?
How Generics is used to achieve Parametric Polymorphism?
How are Type Wildcards used to achieve Parametric
Polymorphism?
Can you achieve Parametric Polymorphism without Generics?

Subtype polymorphism

In Subtype polymorphism, also known as inclusion polymorphism,
the parameter definition of a function supports any argument of a
type or its subtype.

In the code below, the method printWheelsCount() takes Vehicle as
parameter and prints count of wheels in the Vehicle. The main
method shows subtype polymorphic calls, passing objects of Car
and Bike as arguments to the printWheelsCount() method. Every
place where it expects a type as parameter, it also accepts subclass
of that type as parameter.

abstract class Vehicle{
 public abstract int getWheelsCount();
}

class Car extends Vehicle{
 @Override
 public int getWheelsCount() {
 return 4;
 }
}

class Bike extends Vehicle{
 @Override
 public int getWheelsCount() {
 return 2;
 }
}

public void printWheelsCount(Vehicle vehicle) {
 print(vehicle.getWheelsCount());
}

public void main(String[] args) {
 printWheelsCount(new Car());
 printWheelsCount(new Bike());
}

Questions
What is Subtype Polymorphism?
What is Inclusion Polymorphism?
What is the difference between Parametric Polymorphism and
SubType Polymorphism?
Can you achieve SubType polymorphism using Generics?

Overriding

Method overriding is redefining the base class method to
behave in a different manner than its implementation in the base
class.
Method overriding is an example of dynamic or runtime
polymorphism.
In dynamic polymorphism, runtime takes the decision to call an
implementation, as compiler does not know what to bind at
compile time.

Rules for method overriding

Method arguments and its order must be same in the overriding
method.
Overriding method can have same return type or subtype of
base class method's return type.
Access modifier of overridden method cannot be more
restrictive than its definition in base class.
Constructor, static and final method cannot be overridden.
Overridden method cannot throw checked exception if its
definition in base class doesn't, though overridden method can
still throw unchecked exception.

Questions
What is method overriding?
What is dynamic polymorphism?
Why can't you override static methods defined in super class or
interface?
Can you override a final method defined in super class?

Can you override a public method in super class and mark it
protected?
Why can't you override constructor of super class?
Can an overriding method throw checked exception; when the
overridden method in the super class does not? Why?
What are the benefits of method overriding?

@Override

@Override annotation is way to explicitly declare the intention of
overriding the method implementation in the base class. Java
performs compile time checking for all such annotated methods. It
provides an easy way to mistake proof against accidentally writing
wrong method signature, when you want to override from base class.

If a derived class defines a method having the same signature as a
method in the base class, the method in the derived class hides the
one in the base class. By prefixing a subclass's method header with
the @Override annotation, you can detect if an inadvertent attempt is
made to overload instead of overriding a method.

Questions
What is the purpose of @Override annotation?
What happens if you define a method with the same signature
as defined in the super class and not use @Override
annotation?
What are the benefits of @Override annotation?

Overloading

Method overloading is defining more than one method with the
same name, but with different parameters.
Method overloading is an example of static or compile-time
polymorphism.
In static polymorphism, it's while writing the code, decision is
made to call a specific implementation.

Rules for method overloading

Method can be overloaded by defining method with the same
name as an existing one, having

Different number of argument list.
Different datatype of arguments.
Different order of arguments.

Return type of the overloaded method can be different.
Method with the same name and exactly the same parameters
cannot be defined, when they differ only by return type.
Overloading method is not required to throw same exception as
the method its overloading.

Operator Overloading

Operator overloading is an ability to enhance the definition of
language dependent operators. For example, you can use +
operator to add two integers and also to concat two strings.

Questions
Explain method overloading?

What is static polymorphism?
What is the difference between static and dynamic
polymorphism?
Can you override a method such that all the parameters are
same with the difference only in the return type?
What is operator overloading?
What are the benefits of method overloading?
What is the difference between overriding and overloading?

Abstraction

Abstraction helps to move the focus from the internal details of the
concrete implementation to the type and its behaviour. Abstraction is
all about hiding details about the data, its internal representation and
implementation.

The other related object oriented concept is encapsulation, which
could be used to abstract the complexities and the internal
implementation of a class.

Abstraction also helps making the software maintainable, secure and
provides an ability to change implementation without breaking any
client.

Questions
What is abstraction?
How abstraction is different from encapsulation?
What are the benefits of abstraction?
Can you achieve abstraction without encapsulation?

Inheritance

Inheritance is an object oriented design concept that deals with
reusing an existing class definition (known as super class) and
defining more special categories of class (know as sub class) by
inheriting that class. It focuses on establishing IS-A relationship
between sub class and its super class. Inheritance is also used as
technique to implement polymorphism; when a derived type
implements method defined in the base type.

Rules for Inheritance

There can be a multiple level of inheritance, based on the
requirements to create specific categories.
Only single class inheritance is allowed in Java, as multiple
inheritance comes with its share of complexity; see Diamond
Problem.
Class declared final cannot be extended.
Class method declared final cannot be overridden.
Constructor and private members of the base class are not
inherited.
The constructor of base class can be called using super().
The base class's overridden method should be called using
super keyword, otherwise you will end up calling the overriding
method in the sub class recursively.

Questions
Explain inheritance?
What is the purpose of inheritance?
What should be the criteria to decide inheritance relation
between two classes?
How inheritance plays an important role in polymorphism?

Can you inherit final class?
What happens if you don't use super keyword to call an
overridden member?
Why can't you inherit static members defined in the super class?
What are the challenges you can face if multiple inheritance is
possible in Java?

Composition

Composition is an object oriented design concept that is closely
related to inheritance, as it also deals with reusing classes; but it
focuses on establishing HAS-A relationship between classes. So
unlike Inheritance, which deals with extending features of a class,
composition reuses a class by composing it. Composition is
achieved by storing reference of another class as a member.

Inheritance vs Composition

Problem with inheritance is that it breaks encapsulation as the
derived class becomes tightly coupled to the implementation of the
base class. The problem becomes complex when a class is not
designed keeping future inheritance scope and you have no control
over the base class. There is possibility of breaking a derived class
because of changes in the base class.

So, inheritance must be used only when there is perfect IS-A
relationship between the base and the derived class definitions; and
in case of any confusion prefer composition over inheritance.

Questions
Explain composition?
What is the difference between inheritance and composition?
What should be the criteria to decide composition relation
between two classes?
Explain few problems with inheritance that can be avoided by
using composition?
When would you prefer composition over inheritance and vice
versa?

FUNDAMENTAL
DESIGN

CONCEPTS

Dependency Injection vs Inversion of
Control

Dependency Injection and Inversion of Control promotes modular
software development by loosely coupling the dependencies. Modular
components are also more maintainable and testable.

Inversion of Control

Inversion of Control provides a design paradigm where dependencies
are not explicitly created by the objects that requires these; but such
objects are created and provided by the external source.

Dependency Injection

Dependency Injection is a form of IoC that deals with providing object
dependencies at runtime; through constructors, setters or service
locators. Annotations and Interfaces are used to identify the
dependency sources.

Mode of dependency injection:
Through constructor
Through setter
Through method parameter

It's the responsibility of dependency injection framework to inject
the dependencies.

The figure below depicts Dependency Injection
concept.

The code below demonstrates dependency injection as constructor
parameter.

public class Account {

 UserService userService;
 AccountService accountService;

 public Account(UserService userService,
 AccountService accountService) {
 this.userService =
 userService;
 this.accountService =
 accountService;
 }
}

Not only in production systems, DI and IoC provides immense help in
unit testing too, by providing an ability to mock dependencies. Spring
framework is an example of DI container.

Note

It is important to ensure that dependency objects are initialized before
they are requested for.

Questions
What is Inversion of Control?
What is Dependency Injection?
What is the difference between Inversion of Control and
Dependency Injection?
What are the different ways to implement Dependency Injection?
What the different ways to identify dependency sources?
Who has the responsibility to inject dependent objects?
How Dependency injection can be used in unit testing?
How Dependency Injection can be used for modular software
development?

Service Locator

Service locator is an object that encapsulates the logic to resolve the
service requested for. Service locator also provides interface to
register services with it, which allows you to replace the concrete
implementation without modifying the objects that depends on these
services.

In the figure below Account class uses ServiceLocator to resolve the
Account Service and User Service it depends on.

public class Account {

 UserService userService;
 AccountService accountService;

 public Account() {
 this.userService =
 ServiceLocator.getService(UserService.class);
 this.accountService =
 ServiceLocator.getService(AccountService.class);

 }
}

Benefits of Service Locator

Class does not have to manage any service dependency and its
life cycle.
Testing class in isolation is possible, without the availability of
real services it depends on.
Enables runtime resource optimization; as services can be
registered and unregistered runtime.

Questions
Explain Service Locator design pattern?
What are the benefits of using Service Locator?
What is the difference between Service Locator and Dependency
Injection pattern?
When would you prefer Service Locator over Dependency
Injection and vice versa?
How does Service Locator helps in testing?

Diamond Problem

Java doesn't allows extending multiple classes because of the
ambiguity that could arise when more than one super class has
method with the same signature, and compiler can't decide which
super class method to use.

Consider the inheritance hierarchy depicted in the figure below. If the
method calculate() defined in the Base class is overridden by both,
DerivedLeft and DerivedRight, then it creates ambiguity regarding
which version of calculate() does the Confused class inherits.

In the code below there is an ambiguity regarding which version of
calculate() should be called. This is known as Diamond Problem in
Java.

public static void main (String [] args){
 Base base = new Confused();
 base.calculate();
}

Diamond Problem with Default Interface Method

With the introduction of Default Interface methods, if Base,
DerivedLeft and DerivedRight are Interfaces, and there exists
calculate() as default interface method is all three, it will cause the
Diamond Problem.

In such scenario the Confused class has to explicitly re-implement
the calculate() method; otherwise, the ambiguity will be rejected by
the compiler.

Questions
Explain Diamond Problem in Java?
Why Java does not provide multiple inheritances?
Using default interface methods, class can still inherit two
interfaces with same signature method; would this not cause
Diamond Problem? How can you solve it?

Programming to interface

Programming to interface forms basis for modular software
development by facilitating decoupling between software
components. High level of decoupling improves maintainability,
extensibility and testability of software components. Modular
software design also helps to improve speed to market, as it
facilitates parallel software development between multiple teams
working with the same code base.

It's the Programming to Interface design paradigm that forms the
foundation for Inversion of Control, which manages dependency
relationships in any large software application.

Let's take a very simple example. Suppose we have a method to sort
a collection, which is defined with Interface Map as its parameter.
This means, that the sort() method is not tied to any specific type of
Map implementation and you can pass any concrete implementation
of the Map interface.

public static void main (String [] args){
 sort(new HashMap<>());
 sort(new TreeMap<>());
 sort(new ConcurrentSkipListMap<>());
 sort(new TreeMap<>());
}

public static void sort(Map map){
 // perform sort
}

Benefits of programming to interface

Based on the context, you can select the most appropriate
behaviour, runtime.

For testing, you can pass mock objects or stubs implementation.
The interface/API definitions or the contract does not change
frequently.
Programming to Interface also facilitates parallel development
between teams, as developers from different ream can continue
writing code against interfaces before doing integration.

Questions
What is the concept of programming to interface?
What are the benefits of programming to interface?
How does programming to interface facilitate decoupling
between software components?
How dependency injection and programming to interface are
inter-related? Can you achieve dependency injection without
supporting programming to interface?
What are the benefits of modular software?
How does programming to interface helps in unit testing?

Abstract Class vs Interface

Abstract Class

Abstract class cannot be instantiated but can be extended. You
should extend abstract class when you want to enforce a common
design and implementation among derived classes.

Interface

Interface is set of related methods, which defines its behaviour and
its contract with the outside world. Use interface when you want to
define common behaviour among unrelated classes. Interfaces can
also be used without methods and are known as marker interface;
such interfaces are used to categorize the classes. Example of
marker interface is java.io.Serializable, which does not define any
method but must be implemented by the classes that support
serialization.

Difference between Abstract Class and Interface

Abstract class can be updated to add more capabilities to the
class whereas Interface can be added to implement new
behaviour to the class. Though with introduction of default
interface methods, even Interfaces can be extended to have
more capabilities.
Interface can be multiple inherited; whereas, abstract class
cannot.
Interfaces can be applied to unrelated classes; whereas, related
classes extend Abstract class.
Abstract class methods can have any type of access modifier;
whereas, Interface has all public members.
Abstract class can have state associated, which is not possible
with Interface.

Abstract class can be extended without breaking the class that
extends it; whereas, any change in interface, except made for
default and static methods, will break the existing
implementation.

Questions
If an abstract class cannot be instantiated, why would you define
a constructor for an Abstract class?

Constructor can be used to perform the required field
initialization and also to enforce class constraints.

Define Abstract class? What role an Abstract class plays in
class design?
Define Interface? What role an Interface plays in class design?
When would you prefer using Abstract class over Interface and
vice-versa?
Explain various differences between Abstract Class and
Interface?
What are marker interfaces? How are marker interfaces used?
Can you declare an interface method static?
With the introduction of default interface methods; how Abstract
class is still different from an Interface?

Internationalization and Localization

Internationalization

Internationalization of software is the process to ensure that software
is not tied to only one language or locale. Its shortened name is i18n.

Localization

Localization of software is the process to ensure that software has all
the resources available to support a specific language or locale. Its
shortened name is l10n.

Note
Internationalization facilitates localization.

Questions
What is Internationalization?
What is localization?
What is the difference between localization and
internationalization?
Can you achieve localization without building support for
Internationalization?

Immutable Objects

An object is considered immutable when there is no possibility of its
state change after its construction.

Advantages

Easier to design and implement, as you don't have to manage
state change.
Immutable objects are inherently thread safe because they
cannot be modified after creation. So there is no need to
synchronize access to it.
Immutable object has reduced Garbage Collection overhead.

Disadvantages

A separate object needs to be defined for each distinct value, as
you cannot reuse an Immutable object.

Rule for defining Immutable Objects

Declare the class final.
Allow only constructor to create object. Don't provide field setter.
Mark all the fields private.

Example of an immutable class, Employee.

final public class Employee {

 final private int id;

 final private String name;
 final private String department;

 public Employee(int id,
 String name,
 String department) {
 this.id = id;
 this.name = name;
 this.department = department;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public String getDepartment() {
 return department;
 }
}

Questions
What is an immutable object?
What are the rules for defining an immutable object?
What are the advantages/disadvantages of an immutable
object?
How do you create an immutable object?
What are the different situations where you can use immutable
objects?
What is the difference between final and immutable object?
How does declaring a variable final helps with optimization?
Can you list some of the problems with Immutability?

It's harder to define constructors with lots of arguments.
Since it's left to the developer to enforce immutability, even
a single setter added accidentally, can break it.

Cloning

Cloning is process of creating copy of an object.

Simply assigning an existing object reference to an object results in
two references pointing to the same object.

There are two types of cloning, shallow cloning and deep cloning.

Shallow Cloning

Shallow cloning simply copies the values of the properties. For
primitive property members, exact copy is created and for reference
type members, its address is copied. So the reference type
members, both original and the newly created, points to the same
object in heap.

Deep Cloning

Deep cloning recursively copies the content of each member to the
new object. Deep cloning always creates an independent copy of the
original object. To create a deep clone, a dedicated method generally
known as CopyConstructor should be written.

Questions
What is cloning?
What is shallow cloning?
Explain drawbacks with shallow cloning?
What is deep cloning?
What is CopyConstructor?
When would you prefer deep cloning over shallow cloning and
vice versa?

DATA TYPES

NaN

Not a Number also known NaN, is undefined result produced
because of arithmetic computations like divide by zero, operating
with infinity, etc. No two NaNs are equal.

NaNs are of two types:

Quiet NaN - When a quiet NaN is resulted, there is no indication
unless result is checked.
Signalling NaN - When a signalling NaN is resulted, it signals invalid
operation expression.

Questions
What is NaN or Not a Number?
What is Quiet NaN?
What is Signalling NaN?
Are two NaNs equal?

EnumSet

EnumSet is a specialized set implementation to be used with an
Enum type.
EnumSet is represented internally as bit vectors, in a very
compact and efficient manner.
EnumSet provides optimized implementation to perform bit flag
operations and should be used in place of performing int flag
operations.

The following code demonstrates usage of EnumSet.

private enum Vehicle {
 CAR,
 JEEP,
 MOTORCYCLE,
 SCOOTER
};

public static void main(String [] args){
 EnumSet<Vehicle> TWOWHEELERS =
 EnumSet.of(Vehicle.MOTORCYCLE,
 Vehicle.SCOOTER);
 if(TWOWHEELERS.contains(Vehicle.MOTORCYCLE){
 }
}

Questions
What is EnumSet?
Why should you prefer EnumSet for performing bit flag
operations?

Comparing the Types

Primitive types can be compared only using the equality operators
(== and !=); whereas, Reference Types can be compared using both
equality operator and equals() method, depending upon what we
want to compare.

Equality Operators

For reference types, equality operators == and != are used to
compare the addresses of two objects in memory and not their
actual content.

.equals() Method

When you want to compare the content of two objects, equals()
method must be used. java.lang.Object class in Java defines
equals() method, which must be overridden by the subclasses to
facilitate content comparison between its objects. If equal() method
is not overridden by a class, then equals() method of the
java.lang.Object class is called, which uses equality operator to
compare references.

Questions
What are the different ways to compare types in Java?
For reference types, what does the equality operator compares?
What does the equals method compare?
When would you prefer using equals method to equality
operator?
What happens if a class does not override equals method?

Float Comparison

Two float numbers should not be compared using equality operator
==; as the same number, say 0.33, may not be stored in two floating
point variables exactly as 0.33, but as 0.3300000007 and
0.329999999767.

So to compare two float values, compare the absolute difference of
two values against a range.

if(Math.abs(floatValue1 - floatValue2) < EPSILON){
 //
}

In the example above, EPSILON is the range used to compare two
floats. The value of EPSILON is a very small number like 0.0000001,
depending on the desired precision.

Questions
Why you shouldn't use equality operator to compare float
values?
What is the preferred way to compare two float values?
What should be the criteria to define range value that should be
used to compare two float values?

String Comparison

String class object uses equality operator, ==, to tests for reference
equality and equals() method to test content equality.

You should always use equals() method to compare equality of two
String variables from different sources, though Interned Strings can
be compared using equality operators too.

Questions
Why should you use equals method to compare String objects?
What is the pitfall of using equality operator to compare two
String objects?
What are interned string? How can you compare two interned
strings?

Enum Comparison

Enum can neither be instantiated nor be copied. So only single
instance of enum is available, the one defined with the enum
definition.

As only one instance of enum is available, you can use both equality
operator (==), and equals() method for comparison. But prefer using
equality operator, ==, as it does not throw NullPointerException and
it also performs compile time compatibility check.

Questions
What are the different ways to compare two enums?
Explain why you can use both equality operator and equals
method to compare enum?
Which is preferred way to compare two enum values?

Enum vs Public Static Field

Following are advantages of using enum over public static int.

Enums are compile time checked, whereas int values are not.
An int value needs to be validated against an expected range;
whereas, enums are not.
Bitwise flag operations are built into enumSet.

The code below demonstrates usage of enum and public static field.
With public static int, you can pass any int value to AddVehicle()
method.

enum
private enum Vehicle {
 CAR,
 JEEP,
 MOTORCYCLE,
 SCOOTER
};

public void AddVehicle(Vehicle vehicle){
}

public static field
public static int CAR = 0;
public static int JEEP = 1;
public static int MOTORCYCLE = 2;
public static int SCOOTER = 3;

public void AddVehicle(int vehicle){
}

Questions
What are the advantages of using enum over public static int
fields?
Why do you need to perform extra validation with int parameter
as compared to enum parameter?
Why should you prefer using enum to public static int?

Wrapper Classes

Each Primitive data type has a class defined for it, which wraps the
primitive datatype into object of that class. Wrapper classes provide
lots of utility methods to operate on primitive data values. As the
wrapper classes enable primitive types to convert into reference
types, these can be used with collections too.

Questions
What are wrapper classes?
What are the advantages of using wrapper type over primitive
type?
How can you use primitive types with collections?

Auto boxing and Auto unboxing

Auto boxing is an automatic conversion of primitive type to an object,
which involves dynamic memory allocation and initialization of
corresponding Wrapper class object. Auto unboxing is automatic
conversion of a Wrapper class to primitive type.

In the code below, value 23.456f is auto boxed to an object
Float(23.456f) and the value returned from addTax() is auto unboxed
to float.

public static void main(String [] args){
 float beforeTax = 23.456f;
 float afterTax = addTax(beforeTax);
}

public static Float addTax(Float amount){
 return amount * 1.2f;
}

Questions
What is auto boxing and auto unboxing?
What are the advantages of auto boxing?

BigInteger and BigDecimal

BigInteger and BigDecimal are used to handle values which are
larger than Long.MAX_VALUE and Double.MAX_VALUE. Such large
values are passed as String values to the constructor of BigInteger
and BigDecimal. BigDecimal supports utility methods to specify the
required rounding and the scale to be applied.

BigInteger bInt =
 new BigInteger("9876543210987654321098765");

Both BigInteger and BigDecimal objects are immutable, so any
operation on it creates a new object. BigInteger is mainly useful in
cryptographic and security applications.

Questions
What are BigInteger and BigDecimal types?
How are the values of BigInteger and BigDecimal internally
stored?
What are the usages of BigInteger?

STRINGS

String Immutability

The String object is immutable, which means once constructed, the
object which String reference refers to, can never change. Though
you can assign same reference to another String object.

Consider the following example:

String greeting = "Happy";
greeting = greeting + " Birthday";

The code above creates three different String objects, "Happy",
"Birthday" and "Happy Birthday".

Though you cannot change the value of the String object but you
can change the reference variable that is referring to the object.
In the above example, the String reference greeting starts
referring the String object "Happy Birthday".
Note that any operation performed on String results into creation
of new String.
String class is marked final, so it's not possible to override
immutable behaviour of the String class.

Advantages

As no synchronization is needed for String objects, it's safe to
share a String object between threads.
String once created does not change. To take advantage of this
fact for memory optimization, Java environment caches String
literals into a special area in memory known as a String Pool. If a
String literal already exists in the pool, then the same string literal
is shared.
Immutable String values safeguard against any change in value
during execution.
As hash-code of String object does not change, it is possible to
cache hash-code and not calculate every time it's required.

Disadvantages

String class cannot be extended to provide additional features.
If lots of String literals are created, either new objects or because
of any string operation, it will put load on Garbage Collector.

Questions

Why String objects are called immutable?
How is String object created in memory?
What are the advantages and disadvantages of String
Immutability?
Why String objects are considered thread safe?
What are the advantages of declaring the String class final?
What memory optimization is performed by the Java environment
for Strings?
Why you don't have to calculate hash-code of the String object
every time it's used?

String Literal vs Object

String Literal

String literal is a Java language concept where the String class is
optimized to cache all the Strings created within double quotes, into
a special area known as String Pool.

String cityName = "London";

String Object

String object is created using new() operator, like any other object of
reference type, into the heap.

String cityName = new String("London");

Questions
What is String literal?
What are the differences between String Literal and String
Object?
How are the String Literals stored?

String Interning

String interning is a concept of storing only single copy of each
distinct immutable String value.
When you define any new String literal, it is interned. Same
String constant in the pool is referred for any repeating String
literal.
String pool literals are defined not only at the compile time, but
also during runtime. You can explicitly call a method intern() on
the String object to add it to the String Pool, if not already
present.
Placing extremely large amount of text in the memory pool can
lead to memory leak and/or performance issue.

Note: Instead of using String object, prefer using string literal so that
the compiler can optimize it.

Questions
What is String interning?
How can you intern a String Object?
What happens when you store a new String literal value that is
already present in the string pool?
What are the drawbacks of creating large number of String
literals?
Which one is preferred: String Object or String Literal? Why?

String Pool Memory Management

String pool is a special area in memory managed by the Java
compiler for String memory optimization. If there is already a String
literal present in the string pool, compiler refers the new String literal
reference to the existing String variable in the pool, instead of
creating a new literal. Java compiler is able to perform this
optimization because String is immutable.

In this example below, both the String objects are different object and
are stored into Heap.

String cityNameObj = new String("London");
String capitalObj = new String ("London");

Whereas in this example below, both String literal refer to the same
object in memory pool.

String cityName = "London";
String capital = "London";

Questions:
Explain String Pool Memory Management?
How are String Literals stored in memory?
How String Pool is optimized for memory?
How are String Objects stored in memory?

Why can't Java use mechanism similar to String Pool, to store
objects of other data types?

Immutability - Security Issue

It's the responsibility of the Garbage Collector to clear string objects
from the memory; though you can also use reflection to do so, but
that's not recommended.

Since Strings are kept in String Pool for re-usability, chances are that
the strings will remain in memory for long duration. As String is
immutable and its value cannot be changed, a memory dump or
accidental logging of such String can reveal sensitive content like
password or account number, stored into it.

So instead, it's advisable to use char array (char []) to store such
sensitive information, which can be explicitly overwritten by an
overriding content, thus reducing the window of opportunity for an
attack.

Questions:
How are String literals cleared from the String Pool?
Can you use reflection to clear a String object?
What are the security issues associated with the immutable
Strings?
Why you shouldn't use String to store sensitive information like
password, access key, etc.?
Why using char array is advisable to store password, instead of
String?

Circumvent String Immutability

Immutability feature in String can be bypassed using reflection,
though using reflection to do so is NOT recommended, because it's
a security violation and is considered as an attack. The following
code demonstrates how reflection can be used to circumvent string
immutability:

String accountNo = "ABC123";
Field field = String.class.getDeclaredField("value");
field.setAccessible(true);
char[] value = (char[])field.get(accountNo);
// Overwrite the content
value[0] = 'X';
value[1] = 'Y';
value[2] = 'Z';

// Prints "XYZ123"
System.out.println(accountNo);

Questions
Can you override String class to modify its immutability?
Is it technically possible to circumvent string immutability?
Is it recommended to circumvent string immutability using
reflection? Why?

StringBuilder vs StringBuffer

Similarities

Both StringBuilder and StringBuffer objects are mutable, so both
allows String values to change.
Object of both the classes are created and stored in heap.
Similar methods are available on both the classes.

Differences

StringBuffer methods are synchronized, so its thread safe
whereas StringBuilder is not.
Performance of StringBuilder is significantly better than
StringBuffer, as StringBuilder does not has any synchronization
overheads.

Note: If you need to share String objects between threads then use
StringBuffer, otherwise StringBuilder.

Questions
What are the similarities and differences between StringBuffer
and StringBuilder?
When would you prefer StringBuffer to StringBuilder?
Between StringBuffer and StringBuilder, which one would you
prefer in a single-threaded application?

Unicode

Unicode is international standard character encoding system, which
represents most of the written languages in the world. Before
Unicode, there were multiple encoding systems prevalent: ASCII,
KOI8, ISO 8859, etc., each encoding system has its own code
values and character set with different lengths. So to solve this
issue, a uniform standard is created, which is known as Unicode.
Unicode provides platform and language independent unique
number for each character.

Questions
What are Unicode characters?
What are the advantages of using Unicode characters?
What were the problems with old encoding systems?

INNER
CLASSES

Inner Classes

Inner Class – is a class within another class.
Outer Class – is an enclosing class, which contains inner class.

Note
Compiler generates separate class file for each inner class.

Advantages of inner class

Its easy to implement callbacks using inner class.

Inner class has access to the private members of its enclosing
class, which even the inherited class does not have.
Inner class helps implementing closures; closures makes the
surrounding scope and the enclosing instance accessible.

Outer class provide additional namespace to the inner class.

Questions
What is inner class?
What is outer class?
What are the advantages of defining an inner class?
What are closures? How inner class can be used to create
closures?
What are callbacks? How inner class can be used to create
callbacks?
Can inner class access private members of the enclosing outer
class?

What benefit does the outer class brings?

Static Member Nested Class

Static nested class is declared as static inside a class like any
other member.
Static nested class is independent and has nothing to do with
the outer class. It is generally nested to keep together with the
outer class.
It can be declared public, private, protected or at package level.

Declaration of static nested class
// outer class
public class Building {
 // static member inner class
 public static class Block{

 }
}

Creating object of static nested class
// instance of static member inner class
Building.Block block =
 new Building.Block();

Questions
What is static nested class?
If both nested or independent static classes are same, then
what's the benefit of defining an inner class as static?

Local Inner Class

Local inner class is declared and used inside the method block.
It cannot be declared public, private, protected or at package
level.

Creation of local inner class
// outer class
public class CityNames {
 private List<String> cityNames =
 new ArrayList<>();

 public Iterator<String> nameIterator(){
 // local inner class
 class NameIterator
 implements Iterator<String> {
 @Override
 public boolean hasNext() {
 return false;
 }
 @Override
 public String next() {
 return null;
 }
 }
 // return instance of local inner class.
 return new NameIterator();
 }
}

Note
To use the inner class outside, the local inner class must
implement a public interface or Inherit a public class and
override methods to redefine some aspect.

Questions
What is the difference between an inner class and a local inner
class?
Why can't you use access modifier with the local inner class?
Explain the rules for defining local inner class?
What problem a local inner class solves?

Non-Static Nested Class

Non-static nested class is declared inside a class like any other
member.
It can be declared public, private, protected or at package level.
Non-static nested classes are actually closures, as they have
access to the enclosing instance.
Object of outer class is required to create an object of non-static
inner class.

Declaration of non-static nested class
// outer class
public class Building {
 // non-static member inner class
 public class Block{
 }
}

Creating object of non-static nested class
// instance of outer class
Building building =
 new Building();
// instance of non-static member inner class
Building.Block block =
 building.new Block();

Questions
What is non-static nested class?
Why a non-static nested class can be used as closures?
Can you create instance of non-static inner class without
defining an outer class?

Anonymous Inner Class

Anonymous inner class does not have a name.
The anonymous inner class is defined and its object is created
at the same time.
Anonymous inner class is always created using new operator as
part of an expression.
To create Anonymous class, new operator is followed by an
existing interface or class name.
The anonymous class either implements the interface or inherits
from an existing class.

Creation of anonymous inner class
// outer class
public class CityNames {
 private List<String> cityNames =
 new ArrayList<>();

 public Iterator<String> nameIterator(){
 // Anonymous inner class
 Iterator<String> nameIterator =
 new Iterator<String> () {
 @Override
 public boolean hasNext() {
 return false;
 }
 @Override
 public String next() {
 return null;
 }
 };
 // return instance of local inner class.
 return nameIterator();
 }
}

Notes

Do not return an object of inner classes as it could lead to
memory leaks, because it has reference to the outer enclosing
class.
Use anonymous class when you want to prevent anyone from
using the class anywhere else.
Serialization of Anonymous and Inner class must be avoided, as
there could be compatibility issues during de-serialization, due
to different JRE implementation.

Questions
What is anonymous inner class?
How anonymous inner class is different from local inner class?
Why you shouldn't return an object of inner from a method?
If you want to prevent anyone from using your class outside,
which type of inner class would you define?
Why should you avoid serialization of anonymous and inner
class?

FUNCTIONAL
PROGRAMMING

Functional Interface

Functional Interface is an interface with only one abstract method;
but can have any number of default methods.

@FunctionalInterface
public interface Greator<T> {
 public T greater(T arg1, T args2);
}

Annotation @FunctionalInterface generates compiler warning when
the interface is not a valid functional interface.

Function Interface Greater
@FunctionalInterface
public interface Greator<T> {
 public T greater(T arg1, T args2);
}

Account class, defined below, used as an argument to the functional
interface Greater.

public class Account {
 private int balance;

 public Account(int balance) {
 this.balance = balance;
 }

 public int getBalance() {
 return balance;
 }

 @Override
 public String toString() {
 return "Account{" +
 "balance=" + balance +
 '}';
 }
}

Code below demonstrates the usage of Lambda expression to find
the account with the greater balance. Similarly same functional
interface , Greater, can be used to compare other similar business
objects too.

public static void main(String [] args){

 Greator<Account> accountComparer =
 (Account acc1, Account acc2) ->
 acc1.getBalance() > acc2.getBalance() ?
 acc1 :
 acc2;

 Account account1 =
 new Account(6);
 Account account2 =
 new Account(4);

 System.out.println(
 " Account with greater balance: "
 + accountComparer.greater(account2, account1));
}

Java also provides set of predefined functional interfaces for most
common scenarios.

Questions
What is Function Interface?
What are the benefits of using Functional Interface?

Lambda Expression

Lambda expressions provide a convenient way to create anonymous
class. Lambda expressions implements Functional Interface more
compactly. Lambda Expressions are primarily useful when you want
to pass some functionality as argument to another method and defer
the execution of such functionality until an appropriate time.

Lambda expression can be just a block of statement with method
body and optional parameter types, but without method name or
return type. It can be passed as a method argument and can be
stored in a variable.

// lambda expressions
() -> 123
(x,y) -> x + y
(Double x, Double y) -> x*y

Questions
What is Lambda Expression?
How is Lambda Expression and Anonymous class related?
Can you pass Lambda Expression as method parameter?
What is the meaning of deferred execution of functionality, using
a Lambda Expression?
What are the benefits of using Lambda Expression?
How's Lambda Expression and Functional Interface related?

Pure Functions

Pure functions are function whose results depend only on the
arguments passed to it and is neither affected by any state change in
the application nor it changes the state of the application. Pure
functions always return the same result for the same arguments.

public int increaseByFive(int original){
 int toAdd = 5;
 return original + toAdd;
}

Questions
What is a Pure Function?
What is the use of Pure Function in Functional Programming?
How is it guaranteed that the Pure Function will always return
the same results for the same arguments?

Fluent Interface

Fluent interface is used to transmit commands to subsequent calls,
without a need to create intermediate objects and is implemented by
method chaining. The fluent interface chain is terminated when a
chained method returns void. Fluent interface improves readability
by reducing the number of unnecessary objects created otherwise.

In the code below, Fluent Interface is used to add a new Employee.

employee.create()
 .atSite("London")
 .inDepartment("IT")
 .atPosition("Engineer");

Fluent interfaces are primarily used in scenarios where you build
queries, create series of objects or build nodes in hierarchal order.

Questions
What is Fluent Interface?
What are the benefits of defining and using Fluent Interface?
Describe some usage of Fluent Interface?

GENERICS

Generics

Generics is a mechanism that allows same code in a type (class or
interface) or a method to operate on objects of different types, while
providing compile-time type safety. Generics are introduced to
enforce type safety especially for the collection classes.

Once a type of the parameter is defined in generics, the object
will work with the defined type only.

In generics, the formal type parameter (E in the case below) is
specified with the type (class or interface)

// Generic List type
// E is type parameter
public interface List<E> {
 void add(E x);
 Iterator<E> iterator();
}

In generics, the parameterized type (Integer in this case) is
specified when variable of type is declared or object of type is
created.

// variable of List type declared
// With Integer parameter type
List<Integer> integerList =
 new ArrayList<Integer>();

Notes
There is parameter naming convention that is generally used in
Generics. E for element, T for type, K for key and V for values.

Generic type is a compiler support. All the type parameters are
removed during the compilation and this process is called

erasure.

Due to strong type checking, generics avoid many
ClassCastException instances.

Generic Class Example
The following NodeId generic class definition can be used with
the object of any type.

// NodeId generic class with type parameter
public class NodeId<T> {
 private final T Id;
 public NodeId(T id) {
 this.Id = id;
 }
 public T getId() {
 return Id;
 }
}

Usual SuperType – SubType rules do not apply to generics. In
this example, even though Integer is derived from Object, still
NodeId with type parameter Integer cannot be assigned to
NodeId with type parameter Object.

// Parameter Type - Object
NodeId<Object> objectNodeId =
 new NodeId<>(new Object());
// Parameter Type - Integer
NodeId<Integer> integerNodeId =
 new NodeId<>(1);
// this results in error
objectNodeId = integerNodeId;
(error)

Questions

What is Generics?
What are the various benefits that Generics provide to the Java
collection framework?
What is the meaning of the statement that "Generics is compiler
support"? Are Generics not available runtime?
What are the parameter naming convention that is generally
used in Generics?

Type Wildcards

Wildcard in generics is represented in form of "?". For example,
method which takes List<?> as parameter will accept any type
of List as argument.

public void addVehicles(List<?> vehicles) {
 //...
}

Optional upper and lower bounds are placed to impose
restrictions, as exact parameter type represented by wild card is
unknown.

// Only vehicles of type Truck can be added
public void addVehicles
 (List<? extends Truck> vehicles) {
 //...
}

Notes

Do not return wildcard in a return type as its always safer to
know what is returned from a method.

Upper Bound

To impose restriction, upper bound can be set on the type
parameters. Upper bound restricts a method to accept unknown
type arguments extended only from specified data type, like
Number on example below.

// Upper bound of type wild card
public void addIds(List<? extends Number> T){

Lower Bound

To impose restriction, lower bound can be set on the type
parameters. Lower Bound restricts a method to accept unknown
type argument, which is super type of specified data type only,
like Float in the example below.

// Lower bound of type wild card
public void addIds(List<? super Float> T){

Type Inference

Type inference is compiler's ability to look at method invocation
and declaration to infer the type arguments.
In Generics, operator called Diamond operator, <>, facilitates
type inference.

// Type inference using Diamond operator
List<Integer> integerList =
 new ArrayList<>();

Questions
What are Type Wildcards in Generics?
Explain Upper Bound type wildcard?
Explain Lower Bound type wildcard?
How are the different type wildcards used in generics?
What is automatic type inference in Generics? What is the
diamond operator in Generics?

Generic Method

Generic methods define their own type parameters.

// generic method
public <T> void addId (T id){

If we remove the <T> from above method, we will get
compilation error as it represents the declaration of the type
parameter in a generic method.

The type (class or interface) that has generic method, does not
have to be of genetic type.

While calling the generic method, we do not need to explicitly
indicate the type parameter.

Notes
Prefer using Generics and parameterized classes/methods to
enforce compile time type safety.
Use Bounded Type parameter to increase flexibility of method
arguments, at the same time it also helps to restrict the types
that can be used.

Questions
Explain Generics method?
Can you add a Generic method to a non-Generic type?
What are the benefits of defining bounded type as method
parameters?
How's compile type safety enforced by Generics?

Java Generics vs Java Array

Java Generics

Consider the following hierarchy,

As both Car and Bike are derived from Vehicle, is it possible to assign
List<Car> or List<Bike> to variable of List<Vehicle> ?

Actually not, List<Car> or List<Bike> can not be replaced with
List<Vehicle>, because you cannot put a Bike in the same list that
has cars. So even though Bike is a Vehicle, it's not is a Car.

List<Bike> bikes =
 new ArrayList<Bike>();

// suppose this is allowed
List<Vehicle> vehicles = bikes;
vehicles.add(new Car());

// Error - Bike and Vehicle are
// considered incompatible types.
Bike bike = vehicles.get(0);

Java compiler does this checking compile time, for the incompatible
types. For more on this refer Type Erasure.

Java Array
However, unlike Generics, array of Car can be assigned to array of
Vehicle:

Car[] cars = new Car[3];
Vehicle [] vehicles = cars;

For Array, even though the compiler allows the above code to
compile but when you run this code, you will get
ArrayStoreException.

// this will result in ArrayStoreException
vehicles[0] = new Bike();

So even though the compiler did not catch this issue, runtime type
system caught it. Array are reifable types, which means that run time
is aware of its type.

Questions
What are reifable types?
Why can't you assign a Generic collection object of sub type to a
Generic collection object of super type?

Why it's allowed to assign an array object of sub type to an array
object of super type? Are Java array more polymorphic than
Generics?

Type Erasure

For Java generic types, due to a process known as type erasure,
Java compiler discards the type information and it is not available at
runtime. As the type information is not available runtime, java
compiler takes an extra care to stop you at compile time itself,
preventing any heap pollution.

Generics type are also of non-reifiable types, which means that its
type information is removed during the compile time.

Questions
What are non-reifable types?
What is type erasure?
What would happen if type erasure is not there?

Co-variance

Covariance is a concept where you can read items from a generics
defined with upper bound type wildcard, but you cannot write
anything into the collection.

Consider the following declarations with upper bound type wildcard:

List<? extends Vehicle> vehicles =
 new ArrayList<Bike>();

You are allowed to read from vehicles generic collection, because
whatever is present in the list is sub-class of Vehicle and can be up-
casted to a Vehicle.

Vehicle vehicle = vehicles.get(0);

However, you are not allowed to put anything into a covariant
structure.

// This is compile error
vehicles.add(new Bike());

This would not be allowed, because Java cannot guarantee what is
the actual type of the object in the generic structure. It can be
anything that extends Vehicle, but the compiler cannot be sure. So
you can read, but not write.

Questions
Explain co-variance?
Why can't you add an element of subtype to a generic defined
with upper bound type wildcard?

Contra-variance

Contra-variance is a concept where you can write items to a generic
defined with lower bound type wildcard, but you cannot read
anything from the collection.

Consider the following declarations with lower bound type wildcard:

List<? super Car> cars = new ArrayList<Vehicle>();

In this case, even though the ArrayList is of type Vehicle, you can
add Car into it through contra-variance; because Car is derived from
Vehicle.

cars.add(new Car());

However, you cannot assume that you will get a Car object from this
contra-variant structure.

// This is compile error
Car vehicle = cars.get(0);

Questions
Explain contra-variance?
Why can't you read element from a Generic defined with lower
bound type wildcard?

Co-variance vs Contra-variance

Use covariance when you only intend to read generic values
from the collection,
Use contra-variance when you only intend to add generic values
into the collection, and
Use the specific generic type when you intend to do both, read
from and write to the collection.

Questions
When should you use co-variance?
When should you use contra-variance?

COLLECTIONS

Collections

Collections are data structures that are basic building blocks to
create any production level software application in Java. Interviewers
are interested in understanding different design aspects related to
correct usage of collections. Each collection implementation is
written and optimized for specific type of requirement, and interview
questions are to gauge interviewee's understanding of such
aspects.

Questions are often asked to check whether the interviewee
understands correct usage of collection classes and is aware of
alternative solutions available.

Following are few aspects on which questions on collections are
asked:

Collection types in Java.
Unique features of different collection types.
Synchronized collection.
Concurrent collection.
Ordering of elements in a collection.
Speed of reading from collection.
Speed of writing to collection.
Uniqueness of elements in a collection.
Ease of inter-collection operation.
Read-only collections.
Collection navigation.

Collection Fundamentals

Collection is a container that groups multiple elements together.
Following is a simple example of a collection.

// Create a container list of cities
List<String> cities = new ArrayList<>();
// add names of cities
cities.add("London");
cities.add("Edinburgh");
cities.add("Manchester");

Notes
Collections work with reference types.
All collection interface implementation are Generic.
All collection types can grow or shrink in size, unlike arrays.
Java provides lots of methods to manipulate collections based
on its usage, so before you add one, always check the existing
methods.

Collection Framework

Collection framework is defined by the following components.

Interfaces - are the abstract types defined for each specific type
of usage and collection type.
Implementation - are concrete implementation classes to create
object to represent different type of collections.
Algorithms - are applied to these collections to perform various
computation and to manipulate the elements in the collection.

Collection Framework helps you to reduce programming efforts, by
providing data structures and algorithms to operate on them.

Questions
Explain collections?
How collections and Generics related?
Can you use collections with the primitive types?
How can you use collection with the primitive types?
Explain difference between collections and arrays?
What is the benefit of collection framework?
What are the different components of collection framework?

Collection Interfaces

An interface defines its behaviour in the form of signature of methods
it defines. To use a collection, you should always write code against
collection interfaces and not class implementations, so that the code
is not tied to a specific implementation. This protects from possible
changes in underlying implementation class.

Following are the most important interfaces that define collections
and their behaviour. Each child node below is inherited from its
parent node.

+ Collection
 + Queue
 + BlockingQueue
 + TransferQueue
 + BlockingDeque
 + Deque
 + BlockingDeque
 + List
 + Set
 + SortedSet
 + NavigableSet

+ Map
 + SortedMap

Questions
Why should you write code against the collection interface and
not concrete implementation?

Collection Types

Set - Set contains unique elements.
List - List is an ordered collection.
Queue - Queue holds elements before processing in FIFO
manner.
Deque - Deque holds elements before processing in both, FIFO
and LIFO manner.
Map - Map contains mapping of keys to corresponding values.

Questions
What are the different collection types?
Define Set collection Type?
Define List collection Type?
Define Queue collection Type?
Define Deque collection Type?
Define Map collection Type?
What is the difference between Queue and Deque?

Set

Basic Set
// Create a set
Set<String> set =
 new HashSet<>();

Set is collection of unique elements.

Elements in the Set are stored un-ordered.
Only one null element can be added to a Set.
Duplicate elements are ignored.

When ordering is not needed, Set is fastest and has smaller
memory footprint.

Linked Hashset
// Create a linkedHashSet
Set<String> linkedHashSet =
 new LinkedHashSet<>();

LinkedHashSet keeps the Set elements in the same order in
which they were inserted.
Insertion order is not affected in LinkedHashSet if an element is
re-inserted.
Iterator in LinkedHashSet returns elements in the same order in
which these were added to the collection.

Sorted Set

SortedSet imposes ordering of elements to be either sorted in a
natural order by implementing Comparable interface or custom
sorted using Comparator object.

TreeSet is an implementation class for the SortedSet interface.

// Create a sorted set of city names
SortedSet<String> cityNames =
 new TreeSet<>();

Use Comparator object to perform custom sorting.

SortedSet<City> sortedCitiesByName =
 new TreeSet<>(Comparator.comparing(
 City::getName));

If an element implements Comparable interface, then
compareTo() method is used to sort in the natural order.

Navigable Set

NavigableSet inherits from the SortedSet and defines additional
methods.
NavigableSet can be traversed in both, ascending and
descending order.
TreeSet is one of the implementation classes for NavigableSet
interface.

Questions
Can you add duplicate elements in a Set?
Which collection type should you use when ordering is not a
requirement? Why?
Can you add a null element to a Set?
Which Set class should you use to maintain order of insertion?

What happens to ordering, if same element is inserted again in
a Set? Will it maintain its original position or inserted at the end?
Which Set class should you use to ensure ordering of the
elements?
Which Set class should you use when you need to traverse in
both the directions?

LIST

List is an ordered collection of objects.
List can have duplicate.
List can have multiple null elements.
In List, an element can be added at any position.
Using ListIterator, a list can be iterated in both, forward and
backward direction.

// Create a list of cities
List<String> cities =
 new ArrayList<>();

ArrayList

ArrayList is based on array.
It performs better if you access elements frequently.
Add and remove is slower in the ArrayList. If an element is
added anywhere, but the end, requires shifting of element. If
elements are added beyond its capacity then the complete array
is copied to newly allocated place.

Linked List

LinkedList is based on list.
LinkedList is slower in accessing elements and only sequential
access allowed.
Adding and removing elements from LinkedList is faster.
LinkedList consumes more memory than ArrayList as it keeps
pointers to its neighbouring elements.

List Iterator

ListIterator iterates list in both the directions

// full list iterator
ListIterator<String> fullIterator =
 cityList.listIterator();

// partial list iterator, starts at index 3
ListIterator<String> partialIterator =
 cityList.listIterator(3);

Notes
Random access is better in ArrayList as it maintains index
based system for its elements whereas LinkedList has more
overhead as it requires traversal through all its elements.

Questions
Can you add duplicate elements to a List?
Can you add null element to a list?
In which scenarios would you use ArrayList: frequent
add/update or frequent reading?
In which scenarios would you use LinkedList: frequent
add/update or frequent reading?
Between ArrayList and LinkedList, which one consumes more
memory? Why?
Between ArrayList and LinkedList, which one would you prefer
for frequent random access? Why?

Queue

Queue is a collection designed to hold elements prior to
processing.
Queue has two ends, a tail and a head.
Queue works in FIFO manner, first in and first out.

Types of Queues

Queue - simple queue which allows insertion at tail and removal
from head, in a LIFO manner.
Deque - allows insertion and removal of elements from head
and tail.
Blocking Queue - blocks the thread to add element when its full
and also blocks the thread to remove element when its empty.
Transfer Queue - special blocking queue where data transfer
happens between two threads.
Blocking Deque - combination of Deque and blocking queue.

Priority queue - element with highest priority is removed first.
Delay queue - element is allowed to be removed only after delay
associated with it has elapsed.

Basic Queue

Queue has one entry point (tail) and one exit point (head).
If entry and exit point is same, its a LIFO (last in first out) queue.

// simple queue
Queue<String> queue =

 new LinkedList<>();

Priority Queue

In PriorityQueue, a priority is associated with the elements in the
queue.
Element with highest priority is removed next.
PriorityQueue does not allow null element.
Element of queue either implement Comparable interface or use
Comparator object to calculate priority.

// City class implements Comparable interface
Queue<City> pq =
 new PriorityQueue<>();

Deque

Deque allows insertion and removal from both ends.
Deque does not provide indexed access to elements.
Deque extends Queue interface.

// Create a Deque
Deque<String> deque =
 new LinkedList<>();

Blocking Queue

BlockingQueue interface inherits from Queue.
BlockingQueue is designed to be thread safe.
BlockingQueue is designed to be used as producer-consumer
queues.

Transfer Queue

TransferQueue extends BlockingQueue.
It may be capacity bounded, where Producer may wait for space
availability and/or Consumer may wait for items to become
available.

// Transfer Queue
TransferQueue<String> ltq =
 new LinkedTransferQueue<String>();

Questions
What is the purpose of Queue?
How's Deque different from Queue?
What is priority queue?
What is the criterian to remove element from priority queue?
What is a Delay Queue?
What is a Blocking Queue?
Which Queue is a thread safe queue?
Which Queue implements Producer-Consumer pattern?
Explain difference between Blocking Queue and Transfer
Queue?
Which Queue is capacity bounded to allows only the specified
number of elements in Queue? What happens if you try to put
more than its capacity?

Map

Map contain key-value mapping.
Usually Map allow one null as its key and multiple null as
values, but its left to the Map's implementation class to define
restrictions.

Implementation

HashMap

HashMap is based on hash table.
HashMap does not guarantee order of the elements in map.
HashMap's hash function provides constant-time performance
for get and put operations.
HashMap allows one null for the key and multiple null for the
value.

// Create a map using HashMap
Map<String, String> hashMap =
 new HashMap<>();

LinkedHashMap

LinkedHashMap is hash table and linked list implementation of
Map interface.
LinkedHashMap stores entry using doubly linked list.
Use LinkedHashMap instead of HashSet if insertion order is to
be maintained.
Performance of HashMap is slightly better than LinkedHashMap
as LinkedHashMap has to maintain linked list too.
It ensures iteration over entries in its insertion order.

// LinkedHashMap
LinkedHashMap lhm =

 new LinkedHashMap();

WeakHashMap

WeakHashMap stores only weak references to its keys.
WeakHashMap supports both null key and null value.
When there is no reference to keys, they become candidate for
garbage collection.

// WeakHasMap
 Map map =
 new WeakHashMap();

Sorted Map

SortedMap provides complete ordering on its keys.
Sorts map entries on keys based either on natural sort order
(Comparable) or custom sort order (Comparator).
SortedMap interface inherits from Map.

// sorted map
SortedMap<String,String> sm =
 new TreeMap<>();

Navigable Map

NavigableMap extends the SortedMap interface.
TreeMap class is implementation of NavigableMap.
NavigableMap can be accessed in both, ascending and
descending order.
It supports navigation in both direction and getting closest match
for the key.

// Create a Navigable Map
NavigableMap<String,String> nm =
 new TreeMap<>();

Concurrent Map

ConcurrentHashMap is concrete implementation of
ConcurrentMap interface.
ConcurrentMap uses fine-grained synchronization mechanism
by partitioning the map into multiple buckets and locking each
bucket separately.
ConcurrentHashMap does not lock the map while reading from
it.

// Create a Concurrent Map
ConcurrentMap<String,String> cm =
 new ConcurrentHashMap<>();

Notes
The Map keys and Set items must not change state, so these
must be immutable objects.
To avoid implementation of hashCode() and equals(), prefer
using immutable classes provided by JDK as key in Map.
Never expose collection fields to the caller, instead provide
methods to operate on those.
HashMap offers better performance for inserting, locating and
deleting elements in a map.
TreeMap is better if you need to traverse the keys in a sorted
order.

Questions
How Map is different from other collections?
Can you add a null value as key to a Map?
Can you guarantee ordering of elements in HashMap?

How HashMap is able to provide constant-time performance for
get and put operations?
What is the difference between HashMap and LinkedHashMap?
If insertion order is to be maintained, which one would you use:
LinkedHashMap or HashSet ? Why?
What are WeakHashMap?
When you want to maintain ordering of key, which Map class
would you use?
Which Map class would you use to access it in both ascending
and descending order?
Which Map implement is optimized for thread safety?
How does ConcurrentHashMap implements scalability, still
maintaining a good performance?
Why the key used for Map and the value used for Set should be
of immutable type?
What are the disadvantages of exposing internal collection
object to the caller?
Which collection is best if you want to traverse the collection in
sorted order?

Algorithms

Sorting - is used to sort collection in ascending or descending
order. You can either use the natural order, if the key class has
implemented Comparable interface, or need to pass the
Comparator object for custom sorting.
Searching - BinarySearch algorithm is used to search keys.
Shuffling - it re-orders the elements in the list in random order,
generally used in games.
Data Manipulation - reverse, copy, swap, fill and addAll
algorithms are provided to perform usual data manipulation on
collection elements.
Extreme Value - min and max algorithms are provided to find the
minimum and maximum values in the specified collection.

Questions
What are the different algorithms supported by the collection
framework?
Which search algorithm is used to search keys?
How is the shuffling algorithm used?

Comparable vs Comparator

Comparable interface is implemented to sort the collection elements
in natural order and Comparator object is used to perform custom
sort on the collection elements.

If an element implements Comparable interface, then compareTo()
method is used to sort in the natural order. CompareTo() method
compares the specified object with the existing object for order. It
returns negative integer, zero or positive integer as existing object is
smaller than, equal to and greater than the specified object.

Comparable interface implementation

@Override
public int compareTo(Employee employee) {
 //comparison logic
}

A Comparator object contains logic to compare two objects that
might not align with the natural ordering. Comparator interface has
compare() method, which takes two objects to return negative
integer, zero or positive integer as the first argument is smaller than,
equal to and greater than the second.

Using Comparator object to perform custom sorting.

SortedSet<City> sortedCitiesByName =
 new TreeSet<>(Comparator.comparing(
 City::getName));

Comparator is generally used to provide custom comparison
algorithm in a situation when you do not have complete control over
the class.

Questions
What is the difference between Comparable Interface and
Comparator Class?
When would you implement Comparable Interface to sort a
collection?
When do you use Comparator Class to sort a collection?

hashCode() and equals()

HashTable, HashMap and HashSet uses hashCode() and
equals() methods to calculate and compare objects that are
used as their key.
All classes in Java inherit the base hash scheme from
java.lang.Object base class, unless they override the
hashCode() method.
Any class that overrides hashCode() method is supposed to
override equals() method too.

Implementation of hashCode() and equals()
final public class Employee {

 final private int id;
 final private String name;
 final private String department;

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() !=
 o.getClass())
 return false;

 Employee employee = (Employee) o;

 if (id != employee.id) return false;
 if (name != null ?
 !name.equals(employee.name) :
 employee.name != null)
 return false;

 return !(department != null ?
 !department.equals(employee.department) :
 employee.department != null);

 }

 @Override
 public int hashCode() {
 int result = id;
 result = 31 * result +
 (name != null ?
 name.hashCode() :
 0);
 result = 31 * result +
 (department != null ?
 department.hashCode() :
 0);
 return result;
 }

}

Rules of hashCode and equals

Once an object is created, it must always report the same hash-
code during its lifetime.
Two equal objects of same class must return the same hash-
code.

Note
Two objects, which are not equal, can still have same hash-code.

How hashCode() and equals() are used

hashCode() and equals() methods are used to segregate items
into separate buckets for lookup efficiency. If two Items have the
same hash-code then both of these will be stored in the same
bucket, connected by a linked list.

If hash-code of two objects is different then equals() method is
not called; otherwise, equals() method is called to compare the
equality.

The figure below conceptually demonstrates the storage of objects in
hash bucket.

Questions
What are the different collections types in Java that use
hashCode and equals methods? Why do these collections type
use hashCode and equals method?
When you override hashCode() method, why should you also
override equals() method?
Why do you need to override hashCode() method, when
hashCode() method is already present in the java.lang.Object
class?
Why should an object return the same hash-code value every
time during its lifetime?
Is it necessary that an object returns the same hash-code every
time program runs?
Is it necessary that two equal object return the same hash-code?
Can two objects, even when they are not equal, still have the
same hash-code?
What is the purpose of calculating hash-code?
What is the purpose of equals method?
If two objects have the same hash code, how are these stored in
hash buckets?
If two objects have different hash code, do you still need equals
method?
If two objects have the same hash code, then how equals
method is used?

HashTable vs HashMap

HashTable and HashMap are data structures used to keep key-value
pair. These maintain an array of buckets and each element is added
to a bucket based on the hashcode of the key object.

The major difference between these is that the HashMap is non-
synchronized. This makes HashMap better for single-threaded
applications, as unsynchronized Objects perform better than
synchronized ones due to lack of locking overheads. In a multi-
threaded application HashTable should be used.

A HashMap can also be converted to synchronised collection using
following method:

Collections.synchronizedMap(idToNameMao);

Questions
What is the purpose of HashTable and HashMap?
What is the difference between HashTable and HashMap?
How does HashTable and HashMap store objects?
Why HashMap is better for single threaded application?
Why performance of HashMap is better than HashTable?
How can you use HashMap in a multi-threaded environment?

Synchronized vs Concurrent Collections

Both synchronized and concurrent collection classes provide thread
safety, but primary difference between these is in terms of scalability
and performance.

Collection Synchronization

Collection synchronization is achieved by allowing access to the
collection only from a single thread, at a time.
It is achieved by making all the public method synchronized.
Any composite operation that invokes multiple methods, needs
to be handled with locking the operation at client side.
Examples of synchronized collections are HashTable, HashSet
and synchronised HashMap.

Collection Concurrency

Collection concurrency is achieved by allowing simultaneous
access to collection from multiple threads.
ConcurrentHashMap implements very fine grained locking on
collection by partitioning the collection into multiple buckets
based on hash-code and using different locks to guard each
hash bucket.
The performance is significantly better because it allows multiple
concurrent writers to the collection at a time, without locking the
entire collection.
Examples of concurrent collection are ConcurrentHashMap,
CopyOnWriteArrayList and CopyOnWriteHashSet.

For large collections prefer using concurrent collection like
ConcurrentHashMap instead of HashTable, as performance of
Concurrent collection will be better due to less locking overhead.

Note that in multi-threaded scenarios, where there are inter-
operation dependencies, you still need to provide synchronized
access to these composite operations on concurrent collections, as
depicted below:

Object synchObject = new Object();

ConcurrentHashMap<String, Account> map =
 new ConcurrentHashMap<>();

public void updateAccount(String userId){
 synchronized (synchObject) {
 Account userAccount = map.get(userId);
 if (userAccount != null) {
 // some operation
 }
 }
}

Questions
What is the purpose of Synchronized and Concurrent
collections?
What is collection synchronization?
What is collection concurrency?
How do you achieve collection synchronization?
In case of composite operation, which needs to invoke multiple
methods to complete the operation, how can you ensure
synchronized access to a collection?
How do you achieve collection concurrency?
How does ConcurrentHashMap provides concurrent access to
multiple threads?
Why performance of ConcurrentHashMap is better despite the
fact that it allows simultaneous writes from multiple threads?

Which one would you prefer between ConcurrentHashMap and
HashTable? Why?

Iterating Over Collections

There are several ways to iterate over a collection in Java. Following
are the most common methods.

Iterable.forEach

forEach method is available with the collections that implements
Iterable interface. forEach method takes a parameter of type
Consumer.

List<Account> accounts =
 Arrays.asList(
 new Account(123),
 new Account(456));

accounts.forEach(acc -> print(acc));

for-each looping

for-each loop can be used to loop map.entrySet() to get key and
value both.

for (Map.Entry<String, Account> accountEntry :
 map.entrySet()) {
 print("UserId - " + accountEntry.getKey() + ", " +
 "Account - " + accountEntry.getValue());
}

for-each loop can be used to loop map.keySey() to get keys.
for-each loop can be used to loop map.values() to get values.
While running a for-each loop, collection cannot be modified.
for-each loop can only be used to navigate forward.

Iterator

Iterator has an ability to move in both backward and forward
directions.
You can remove entries during an iteration when using an
Iterator, which is not possible when you use for-each loop.
for-each also uses Iterator internally.

Iterator<Map.Entry<String, Account>> accountIterator =
 map.entrySet().iterator();

while (accountIterator.hasNext()){
 Map.Entry<String, Account> accountEntry =
 accountIterator.next();

 print("UserId - " + accountEntry.getKey() + ", " +
 "Account - " + accountEntry.getValue());
}

Notes
For-each loop should be preferred over for loop, as for loops are
source of errors, specifically related to index calculations.
Iterator is considered to be more thread safe because it throws
exception if the collection changes while iterating.

Data Independent Access
The code should be written in such a way that client code should not
be aware of the internal structure used to store the collection. This
enables making internal changes without breaking any client code.

So to facilitate data independent access to the collection, it must be
exposed such that an Iterator can be used to iterate through all the
elements of the collection.

Questions
Explain different ways to iterate over collection?
Can you modify collection structure while iterating using for-
each loop?
Can you modify a collection element value while iterating using
for-each loop?
What are the limitations with for-each loop, with respect to
navigation direction?
What is difference between for-each loop and Iterator, with
respect to navigation direction?
Can you modify collection structure while iterating using an
Iterator?
Can you modify a collection element value while iterating using
an Iterator?
Between for-each loop and for loop, which one would you
prefer? Why?
Why Iterators are considered more thread safe?
Explain the concept of providing Data Independent Access to
collection?
How can you design your class to provide Data Independent
Access to the collections that are internally used in your class?

Fail Fast

Iterator methods are considered fail-fast because Iterator guards
against any structural modification made to the collection, after an
iterator is retrieved for the collection. This ensures that any failure is
reported quickly, rather than the application landing into a corrupt
state some time later. In such scenario,
ConcurrentModificationException is thrown.
Iterators from java.util are fail fast.

Questions
What is the meaning of term fail-fast in context of collection
iteration?
What is the benefit of a fail-fast iterator?
What are fail safe iterator?

Fail safe iterator doesn't throw any Exception when
collection is modified, because fail safe iterator works on a
clone of original collection. Iterators from
java.util.concurrent package are fail safe iterators.

ERROR
AND

EXCEPTION

EXCEPTION

Exception class hierarchy in java

Exception is an abnormal situation that interrupts the flow of
program execution.
All exceptions inherit from Throwable.
You subclass Exception class if you want to create a checked
exception or RuntimeException if you want to create unchecked
exception.
Though you can theoretically subclass Throwable class too to
create checked exception, but that's not recommended, as
Throwable is superclass for all exceptions and errors in Java.

Questions
What is an Exception?
Explain root level exception super classes in Java?
Which super class should you sub class to create checked
exception?
Which super class should you sub class to create unchecked
exception?

Checked vs Unchecked vs Error

Checked Exception

Checked exceptions are checked at compile time.
Checked exceptions extend Throwable or its sub-classes,
except RunTimeException and Error classes.
Checked exceptions are programmatically recoverable.
You can handle checked exception either by using try/catch
block or by using throws clause in the method declaration.
Static initializers cannot throw checked exceptions.

public static void main(String args[]) {
 FileInputStream fis = null;
 try {
 fis = new FileInputStream("details.txt");
 } catch (FileNotFoundException fnfe) {
 System.out.println("Missing File :" + fnfe);
 }
}

Unchecked Exception

Unchecked exceptions are checked at runtime.
Unchecked exceptions extend RuntimeException class.
You cannot be reasonably expected to recover from these
exceptions.
Unchecked exceptions can be avoided using good programming
techniques.
Throwing unchecked exception helps to uncover lots of defects.

public int getAccountBalance(
 String customerName) {
 int balance = 0;
 if (customerName == null)
 throw new IllegalArgumentException("Null argument");
 // logic to return calculate balance
 return balance;
}

Error

Error classes are used to define irrecoverable and fatal
exceptions, which applications are not supposed to catch.

Programmers cannot do anything with these exceptions.
Even if you catch OutOfMemoryError, you will get it again
because there is high probability that the Garbage Collector may
not be able to free memory.

Use checked exception only for the scenario where failure is
expected and there is a very reasonable way to recover from it; for
anything else use unchecked exception.

Questions
What are checked exceptions?
What are unchecked exceptions?
What types of exceptions does the Error class in Java defines?
How can you handle checked exceptions?
What happens if an exception is un-handled?
What are the different ways to handle checked exceptions?
Which exception classes can you use in the catch block to
handle both checked and unchecked exceptions?
How do you make choice between checked and unchecked
exceptions?
Can you recover from unchecked exception?

How can you avoid unchecked exception?
Can you throw checked exceptions from static block? Why?

You cannot throw because there is no specific place to
catch it and it's called only once. You have to use try/catch
to handle checked exception.

What should you do to handle an Error?

Exception Handling Best Practices

Even though exception handling is primarily driven by context, but
it's very important that there must be a consistency in the exception
handling strategy. Following are few exception handling best
practices:

1. Never suppress an exception - as it can lead your program to
unsafe and unstable state.

2. Don't perform excessive exception handling - specifically when
you do not know how to completely recover from it.

3. Never swallow an exception - as it may lead the application into
an inconsistent state, and even worst, without recording reason
for it.

4. Don't catch and continue program execution - with some default
behaviour. Default behaviour defined today may not be valid in
future.

5. Don't show generic error message to user - instead clean the
exception handling code to report user-friendly message with
suggestion about the next step.

6. Don't put more than one exception scenarios in single try catch -
as it will be impossible to ascertain reason for the exception.

7. Don't catch multiple checked exceptions in single catch block -
as it will be impossible to ascertain reason for the exception.

8. Don't unnecessarily wrap the exception - which may mask the
true source.

9. Don't reveal sensitive information - instead sanitize exceptions
generated specifically from the sources that may reveal
sensitive information.

10. Always log exception - unless there is compelling reason not to
do so.

11. Don't catch Throwable -as it will be impossible to ascertain
reason for the exception.

12. Don't use exception to control the flow of execution - instead
use boolean to validate a condition where possible.

13. Handle different scenarios programmatically - instead of putting
all coding logic in try block.

14. Explicitly name the threads - in a multithreaded application, it
significantly eases the debugging.

15. Never throw a generic exception - as it will be impossible to
ascertain reason for the exception.

Questions
Describe some exception handling best practices?
What are the pitfalls of suppressing an exception?
What is the problem with showing a generic error message?
What is the downside of swallowing an exception?
What are the pitfalls of handling multiple exceptions in a single
catch block?
What would you do if an exception is thrown from a source that
contains sensitive information? What would you log in such case
and what message would you show to the user?
What is the pitfall of wrapping all the exceptions into a Generic
exception class?
Why you shouldn't use exceptions to control the flow of program
execution?
Should you log all the exceptions? Why?
Why you shouldn't use Throwable or some other root level class
to catch exceptions?
What should be the criteria to select the code block that should
be enclosed into a try block?
If a nested call is made, which passes through multiple
methods, would you implement try-catch in each method? Why?

try-with-resource

try-with-resource is Java language construct, which makes it easier
to automatically close the resources enclosed within the try
statement.

try (FileInputStream fis =
 new FileInputStream("details.txt")) {
 // code to read data
}

The resource used with try-with-resource must inherit
AutoCloseable Interface.
You can specify multiple resources within a try block.

Questions
Which java construct can you use to close the system resources
automatically?
To use a class object within try-with-resource construct, which
Interface should the class inherit from?

THREADING

Threading Terms

Thread is a smallest piece of executable code within a process.
Program is set of ordered operations.
Process is an instance of a program.
Context Switch is expensive process of storing and restoring the
state of thread.
Parallel processing is simultaneous execution of same task on
multiple cores.
Multithreading is the ability of a CPU to execute multiple
processes or threads concurrently.
Deadlock occurs when two threads are waiting for each other to
release lock.

Basic Concepts

All Java programs begin with main() method on a user thread.
Program terminates when there is no user thread left to execute.
Thread maintains a private stack and series of instructions to
execute.
Thread has a private memory called thread local storage, which
can be used to store thread's current operation related data, in a
multi-threaded environment.
JVM allows process of have multiple threads.
Each thread has a priority.

Questions
What is a thread?
What is a program?
What is a process?

What is the difference between a thread and a process?
What is the difference between a program and a process?
Explain context switching of thread?
What is parallel processing?
What is multi-threading?
How parallel processing and multi-threading related?
What is deadlock?
What is a user thread?
What is thread local storage? What are the things would you
store with thread local storage?
Do threads share stack memory?

Thread Lifecycle

Following are various stages of thread states .

New - Thread is created but not started.
Runnable - Thread is running.
Blocked - Thread waiting to enter critical section.
Waiting - Thread is waiting by calling wait() or join().
Time-waiting - Thread waiting by calling wait() or join() with specified
timeout.
Terminated - Thread has completed its task and exited.

Notes
You can get the state of thread using getState() method on the
thread.

Questions
Describe different stages of thread lifecycle?
What is difference between blocked state and waiting state?
How can you find thread's state?
How thread sleep() method is different from thread wait()
method?

Thread Termination

The thread should be stopped calling interrupt() method. Calling
thread interrupt even breaks out of Thread.sleep().

The operation executing on thread should recurrently call
isInterrupted() method to check if thread is requested to be stopped,
where you can safely terminate the current operation and perform
any required cleanup.

if (Thread.currentThread().isInterrupted()) {
// cleanup and stop execution
}

Notes
stop(), suspend() and resume() methods are deprecated, as using
these may lead the program to an inconsistent state.

Questions
Define a good strategy to terminate a thread?
What is thread interrupt? How thread's interrupt method is
different from thread's stop method?
What happens if a thread is sleeping and you call interrupt on
the thread?
Does calling interrupt stops the thread immediately?
Why you shouldn't call thread's stop and suspend methods?

Implementing Runnable vs Extending
Thread

Thread instantiated implementing Runnable Interface

public class RunnableDerived
 implements Runnable {
 public void run() {
 }
}

Thread created extending Thread class

public class ThreadDerived
 extends Thread {
 public void run() {
 }
}

Runnable's run() method does not create a new thread but
executes as a normal method in the same thread it's created on,
whereas Thread's start() methods creates a new thread.

Runnable is preferred way to execute a task on a thread, unless
you are specializing Thread class, which is unlikely in the most
of the case.
By Implementing Runnable, you are providing a specialized
class an additional ability to run too.
Also by separating the task as Runnable, you can execute the
task using different means.

Questions

What are the different ways to create a thread?
How implementing Runnable interface is different from
extending Thread class?
When should you extend Thread class?
When should you inherit Runnable Interface?
Between Runnable and Thread, which one is the preferred way?
Does implementing Runnable creates a thread?
Both Thread class and Runnable Interface have run methods,
what is the difference?

Runnable vs Callable Interface

Runnable Interface

@FunctionalInterface
public interface Runnable {
 public abstract void run();
}

Callable Interface

@FunctionalInterface
public interface Callable<V> {
 V call() throws Exception;
}

Runnable cannot return result and cannot throw a checked
exception.
A Callable needs to implement call() method while a Runnable
needs to implement run() method.
A Callable can be used with ExecutorService methods but a
Runnable cannot be.

Questions
What is the difference between Callable and Runnable
interface?
What is the benefit of using Runnable over Callable?
Can you throw checked exception from Runnable interface?
Why Runnable and Callable interfaces are called Functional
Interface?
Which of the Interface returns result: Runnable or Callable?

Daemon Thread

A daemon thread is a thread, which allows JVM to exit as soon as
program finishes, even though it is still running. As soon as JVM
halts, all the daemon threads exists without unwinding stack or
giving chance to finally block to execute. Daemon thread executes
on very low priority.

Threads inherit the daemon status of parent thread, which means
that any thread that is created by the main thread will be a non-
daemon thread.

Generally the daemon threads are used to support background tasks
or services for the application. Garbage Collection happens on
Daemon thread.

You can create a daemon thread like following:

Thread thread = new Thread();
thread.setDaemon(true);

All non-daemon threads are called user threads. User threads stop
the JVM from closing.

The process terminates when there are no more user threads. The
Java main thread is always a user thread.

Questions
What is Daemon thread?
What is user thread? What is main thread?
Can a program exit if Daemon thread is still running?
Can a program exit if user thread is still running?
When JVM halts exiting all running Daemon thread, does the
finally block on a Daemon thread still gets a chance to execute?

When a new thread is created; is it created as a user thread or a
Daemon thread?
What happens when no user thread is running but a Daemon
thread is still running?
What is Java main thread: a user thread or a Daemon thread?
When you create a new thread on the main thread, what's the
type of thread created: daemon or user?
For what type of jobs should you use Daemon thread?

Race Condition and Immutable Object

Race condition occurs when multiple threads concurrently access a
shared data to modify it. As it is not possible to predict the order of
data read and write by these threads, it may lead to unpredictable
data value.

An object is considered immutable when there is no possibility of its
state change after its construction. If an object is immutable, it can
be shared across multiple threads without worrying about race
condition.

To make an object Immutable

Declare the class final.
Allow only constructor to create object. Don't provide field setter.
Mark all the field private.

Questions
How immutable objects help preventing race condition?
Why race condition may produce unpredictable results?
Why immutable objects are considered safe in multi threaded
environment?
Why should you declare immutable class as final?
Why constructor should be the only way to create immutable
object? What happens if setters are provided?

Thread Pool

Thread Pool is a collection of specified number of worker threads,
which exists separately from the Runnable and Callable tasks.

A fixed thread Pool reduces the overhead of thread creation. It helps
the application to degrade gracefully when there is a surge of
requests beyond its capacity to process, by preventing application
from going into a hang state or from crashing.

Thread Pool also enables a loosely coupled design by decoupling
the creation and execution of tasks.

Creating a fixed thread pool is easy with Executors class where you
can use newFixedThreadPool() factory method to create
ExecutorService to execute tasks.

Questions
What is thread pool?
How a thread pool reduces the overhead of thread creation?
How a thread pool helps to prevent application from hanging or
crashing?
What is fixed thread pool and how is it created?
How does thread pool enables loosely coupled design?

SYNCHRONIZATION

Concurrent vs Parallel vs Asynchronous

Parallel processing is simultaneous execution of same task on
multiple cores.

Concurrent processing is simultaneous execution of multiple tasks;
either on multiple cores or by pre-emptively time-shared thread on
the processor.

Asynchronous processing is independent execution of a process,
without waiting for a return value from intermediate operations.

Questions
Explain concurrent processing?
Explain parallel processing?
Explain asynchronous processing?
Explain the difference between concurrent and parallel
processing?
Does parallel processing require multiple threads?
When an application is concurrent but not parallel?

When application processes multiple operations
simultaneously without dividing these operations further into
smaller tasks.

When an application is parallel but not concurrent?
When application processes one operation dividing the
operation into smaller tasks that are processed in parallel.

When an application is neither concurrent not parallel?
When application processes only one operation without
dividing the operation into smaller tasks.

When an application is both concurrent and parallel?
When application processes multiple operations
simultaneously and also dividing these operations further
into smaller tasks that are processed in parallel.

Thread Synchronization

Race condition occurs when multiple threads concurrently access a
shared data to modify it. As it is not possible to predict the order of
data read and write by these threads, it may lead to unpredictable
data value.

Critical Section is the block of code that if accessed concurrently, by
more than one thread, may have undesirable effects on the
outcome.

Thread Synchronization is controlling the access to critical section to
prevent undesirable effects in the program.

Synchronization creates memory barrier, known as happen-before,
which ensures that all the changes made by a thread to the local
objects in the critical section, are available to any other thread that
acquires the same local objects subsequently.

Questions
Explain race condition in multi-threading?
What is critical section?
What is thread synchronization?
What is a memory barrier?
What is the concept of happen-before in thread
synchronization?

Synchronized Method vs Synchronized
Block

synchronized keyword is used to mark critical section in the code.
Mutual exclusion synchronization is achieved by locking the critical
section using synchronized keyword.

This can be done in following two ways.

Marking method as critical section
public class DatabaseWrapper {
 Object reference = new Object();
 // Method marked as critical section
 public synchronized void writeX() {
 // code goes here
 }
 // Method marked as critical section
 public static synchronized void writeY() {
 // code goes here
 }
}

Marking block of code as critical section
public void writeToDatabase() {
 // multiple threads can reach here
 // Code marked as critical section
 synchronized (this) {
 // only one thread can
 // execute here at a time
 }
 // multiple threads can execute here
}

Notes

Minimize the scope of locking to just critical section. This will
improve overall performance and minimize chances for
encountering a race condition.

Prefer synchronized block over synchronized method, as block
locks only on a local object as opposed to entire class object.

Inside synchronized, never call a method provided by the client
code or the one that is designed for inheritance.

Questions
How is synchronized keyword used?
What is the difference between synchronized method and
synchronized block?
Why synchronized block is preferred to synchronized method?
Does synchronized method locks the entire object?
What problem you may encounter if you call a method provided
by the client, from inside the synchronized block or method?

Conditional Synchronization

Conditional synchronization is achieved using conditional variable
along with wait() and notify() or notifyAll() methods.

// conditional synchronization
public void operation()
 throws InterruptedException {
 synchronized(reference) {
 if (condition1) {
 // wait for notification
 reference.wait();
 }
 if (condition2) {
 // Notify all waiting threads
 reference.notifyAll();
 }
 }
}

1. There are two methods to signal waiting thread(s).
notify() - signals only one random thread.
notifyAll() - signals all threads in wait state.

2. wait() has an overload to pass timeout duration too, wait(long
timeOut).

3. Between notify() and notifyAll() method, prefer
using notifyAll() as it notifies all the waiting threads.

4. notify() wakes a single thread, and if multiple threads are waiting
to be notified, then the choice of thread is arbitrary.

Questions
What is conditional synchronization?
What is the propose of the wait call?
What is the difference between notify and notifyAll method?

When you call notify, with multiple threads waiting for the
notification, which one will be notified?

Between notify and notifyAll, which one would you prefer? Why?

Volatile

In a multi-threaded application, every thread maintains a copy of
variable from main memory to its CPU cache. So any change made
by a thread to the variable in its CPU cache will not be visible to other
threads.

A field marked volatile is stored and read directly from the main
memory. As volatile field is stored in the main memory, all the threads
have visibility to most updated copy of the volatile field's value,
irrespective of which thread modified it.

Consider a class Ledger, which has a member currentIndex to keep
track of number of entries made. In a multi-threaded environment,
each thread will increment currentIndex value independently.

public class Ledger {
 public int currentIndex = 0;
}

If we mark currentIndex as Volatile, then each thread will use its
value from the main memory and will not create a copy of it.

public class Ledger {
 public volatile int currentIndex = 0;
}

Questions
What is volatile field?
Explain the problem that volatile field solves?
Where does the volatile field gets stored?

static vs volatile vs synchronised

static Variable

static variables are used in context of class objects where only one
copy of static variable exists irrespective of how many objects of the
class are created.

But if there are multiple threads accessing the same variable, each
thread will make a copy of that variable in its CPU cache and change
made by a thread will not be visible to other threads.

volatile Variable

volatile variables are used in context of threads, where only one
variable exists irrespective of how many threads or objects
accessing it and everyone always get the most recently updated
value. Volatile forces all the reads and writes to happen directly in
the main memory and not in CPU caches.

synchronized

Both static and volatile are field modifier dealing with memory
visibility related to variables; whereas, synchronized deals with
controlling access to a critical section in code using a monitor, thus
preventing concurrent access to a section of code.

Questions
What are static variables?
All the objects of a class share static variables. But in a multi-
threaded environment; why a change made by one object to the
static variable is not visible to the objects on another thread?

If both static and volatile variables are shared across objects,
then what's the problem a volatile variable solves?
How are volatile and static variables different from
synchronized, as even the synchronized monitor guards the
memory object?

ThreadLocal Storage

Each thread has a private memory called thread local storage, which
can be used to store thread's current operation related data. Usually
the ThreadLocal variables are implemented as private static fields
and are used to store information like Transaction Identifier, User
Identifiers, etc.

ThreadLocal declaration
ThreadLocal<String> threadLocal =
 new ThreadLocal<String>();

Setting thread local value

threadLocal.set("Account id value");

Getting thread local value

String accountId = threadLocal.get();

As ThreadLocal objects are contained within a thread, you don't
have to worry about synchronizing access to that object.

Life of ThreadLocal objects is tied to the thread it's created for,
unless there are other variables referencing the same object.

To prevent leak, it's a good practice to remove ThreadLocal
object using remove() method.

threadLocal.remove();

Questions

What is thread local storage?
What is the kind of information should you store in Thread Local
Storage?
Why you don't need to synchronize access to the objects that
are stored in ThreadLocal Storage?
Why should you call remove method on Thread Local Storage?

wait() vs sleep()

wait()

Conditional Synchronization with wait().

public void manageWaitFor(int timeInMs)
 throws InterruptedException {
 synchronized (reference) {
 if (condition1) {
 // wait for notification
 reference.wait(timeInMs);
 }
 }
}

sleep()

Thread sleeping for specified interval.

public void manageSleepFor(int timeInMs)
 throws InterruptedException {
 //Pause for timeInMs milliseconds
 Thread.sleep(timeInMs);
 //Print a message
 print("Slept for :" + timeInMs + "ms.");
}

wait is called on the object's monitor; whereas, sleep is called
on thread.
Waiting object can be notified; whereas, sleeping thread cannot.
Sleeping thread cannot release a lock; whereas, waiting object
can.
To wake a sleeping thread you need reference of it, which is not
needed for a waiting object.

Questions
What is the difference between wait and sleep?
Why it's possible to notify waiting object to wake but not the
sleeping?
You need direct handle to wake a sleeping thread; do you need
direct access to a waiting object too? Why?
What is the mechanism to signal an object to come out of wait?

Joining Threads

Threads are usually joined when there is a dependency between the
threads. The join() method of the target thread is used to suspend
the current thread. In such situations current thread cannot proceed,
until the target thread on which it depends, has finished execution.

// main thread joined with the thread
public void main(String[] args) {
 Thread thread1 = new Thread(
 ThreadMethodRef::
 threadMethod);
 thread1.start();
 // current thread waits
 // until thread1 completes
 // execution
 thread1.join();
}

Questions
What is the purpose of thread's join method?
Why do you need to join two threads?

Atomic Classes

Atomic classes provides ability to perform atomic operations on
primitive types, such that only one thread is allowed to change the
value until the method call completes. Atomic classes like
AtomicInteger and AtomicLong wraps the corresponding primitive
types. There is one present for reference type too, AtomicReference.

There is no need to provide synchronized access to Atomic Class
objects. Method incrementAndGet() is AtomicInteger is often used in
place of pre and post increment operators.

Questions
What are atomic classes?
Why you don't require synchronizing access to an object of
atomic class?
Why pre and post increment operator are not thread safe?

Pre and post operation are multiple operations under the
hood; read, increment and write. All the three are not
synchronized together, so any thread context switch that
happens in between, will result into undesired result.

What is the difference between Atomic and Volatile variables?
Atomic variables provide atomic access even for the
compound operation like pre and post increment operation,
which is not possible if variable is declared as Volatile.
Volatile just guarantees happen-before reads.

Lock

Locking is a mechanism to control access to the shared
resources in a multi-threaded environment.
ReentrantLock class implements lock interface.
A lock can be acquired and released in different blocks of code.
Lock interface has method tryLock() to verify resource
availability.
As a good practice, acquired lock must be released in the finally
block .

// Thread safe class
public class SafeAccount {
 // Create lock object
 private Lock lockObject =
 new ReentrantLock();
 public void addMoney() {
 // Acquire the lock
 lockObject.lock();
 try {
 // add some money logic here
 } finally {
 // Release the lock
 lockObject.unlock();
 }
 }
}

Questions
Explain locking mechanism in a multi-threaded environment?
Do you need to acquire and release lock in same block of code?
Why should you prefer using tryLock() instead of lock()?

ReadWriteLock

ReadWriteLock maintains pair of associated locks, one for
writing and the other for read-only operations.
Only one thread can acquire write lock, but multiple threads can
have read lock.
ReadWriterLock interface is implemented by
ReentrantReadWriteLock.

// ReentrantReadWriteLock lock
ReentrantReadWriteLock rwl =
 new ReentrantReadWriteLock();
// read lock
Lock rl = rwl.readLock();
// write lock
Lock wl = rwl.writeLock();

Questions
What are the benefits of using ReadWriteLock?
In which scenario would you prefer ReadWriteLock to any other
locking mechanism?

Synchronisers

Synchronizers synchronizes multiple threads to protect a Critical
Section.

Sync
Point Threads

Synchronizer Types
Barriers
Semaphore
Phasers
Exchangers
Latch

Questions
What is the purpose of synchronizers?
What are the different types of synchronizers available in Java?

Barriers

In Barriers, set of threads waits for each other to arrive at barrier
point before moving ahead.
CyclicBarrier is concrete implementation of the Barrier
synchroniser.

// barrier with five threads
CyclicBarrier barrier =
 new CyclicBarrier(5);
 }
}

A Barrier is called cycle because it can be reused after calling
reset() on it.
Action can be passed to the CyclicBarrier, to execute when all
the threads reach barrier point.

// barrier with an action to run
// at the barrier point.
CyclicBarrier barrier =
 new CyclicBarrier(5, () -> {
// barrier point action code.
});

If any of the thread is terminated prematurely then all the other
threads waiting at the barrier point will also exit.
Barriers are generally used when you divide an operation into
multiple tasks on separate threads, and wait for all the tasks to
complete before moving ahead.

Questions
Explain Barrier synchronizer?
Can you reuse the same Barrier object again? How?

What happen if one of thread dies, for which other threads were
waiting at the Barrier?
For what kind of work would you use Barrier?

Semaphore

Semaphore maintains a specified number of permits to access a
Critical Section.

 // Semaphore created with four permit
 // for four threads
 Semaphore semaphore =
 new Semaphore(4);

To gain permit, use acquire() method. Each call to acquire()
method is blocked until permit becomes available.
To release permit, use release() method.
Permit can be released by a different thread, other than the one
that acquired it.
If release() is called more number of times than acquire(), then
for each such additional release, an additional permit will be
added.
If you wish to acquire mutually exclusive lock, initialize the
Semaphore with only one permit.
Semaphore are generally used to allow limited access to an
expensive resource.

Questions
Explain Semaphore synchronizer?
What happens if you call release() more number of time than
acquire()?
What happens when you call acquire, but permit is not
available?
How can you acquire mutually exclusive lock using Semaphore?
Where do you use Semaphore?

Phaser

Unlike other barriers, the number of parties registered with the
Phaser can dynamically change over time.

// Phaser with four registered parties
Phaser phaser =
 new Phaser(4);

A phaser can also be reused again.
Use register() method to register a party.
When the final party for a given phase arrives, an optional action
can be performed and then the Phaser advances to the next
phase.
Use arriveAndAwaitAdvance() method to wait for all parties to
arrive before proceeding to the next phase.
Phasers monitors count of registered, arrived and un-arrived
parties. Even a caller who is not a registered party can monitor
these counts on a Phaser.
A party can be de-registered using arriveAndDeregister()
method, from moving to the next phase.

Questions
Explain Phasor synchronizer?
Can the number of parties registered with Phasor dynamically
change over time?
Can you reuse the same Phaser object again?
Can you monitor count of registered parties with Phasor using
some external object?
What is the difference between Semaphore and Phaser, with
respect to number of parties that can register with it?

Exchanger

Exchanger lets two threads wait for each other at a
Synchronization point to swap elements.

// Exchanging array of strings
Exchanger<ArrayList<String>>
 exchanger =
 new Exchanger<ArrayList<String>>();

Exchangers use exchange() method to exchange information.

// exchanger exchanging data
objectToExchange =
 exchanger.
 exchange(objectToExchange);

On exchange(), the consumer empties the object to be
exchanged and waits for the producer to exchange it with full
object again.

Questions
Explain Exchanger synchronizer?
How many thread are required with the Exchanger object?
What is the primary purpose of Exchanger synchronizer?
Does Exchanger synchronizer uses the same object to
exchange every time or a different object can be exchanged?

Latch

Latch makes the group of threads wait till a set of operations is
finished.
Latch cannot be reused.
CountDownLatch class provides implementation for Latch.
All threads wait calling await() method till countDown() is called
as many times latch counter is set.

// Create a countdown latch with
// five counter
CountDownLatch cdl =
 new CountDownLatch(5);

// Count down on the latch after
// completion of thread job
cdl.countDown();

// awaiting for count down signals
cdl.await();

Questions
Explain Latch synchronizer?
Can you reuse the same Latch object again; like Barrier and
Phaser?
What is the mechanism of signalling a job completion to Latch?

Executor Framework

Executor framework provides an infrastructure to execute set of
related tasks on thread.

It takes care to manage the following.

Creating and destroying threads.
Maintaining optimal number of threads for a task.
Parallel and sequential execution of tasks.
Segregating task submission and task execution.
Policies related to controlling task execution.

// Executor interface definition
public interface
 Executor {
 void execute (Runnable command);
}

Questions
Explain Executor framework?
What are the various capabilities of Executor framework?

Executor Service

ExecutorService inherits from Executor interface providing
following additional methods.

shutdown() - shuts down the executor after submitting the
tasks.
shutdownNow() - interrupts the current task and discards
the pending tasks.
submit() - adds tasks to the Executor.
awaitTermination() - waits for existing tasks to terminate.

ExecutorService provides Future object to track the progress
and the status of the executing task.
All the tasks submitted to the Executor are queued, which are
executed by the thread pool threads.

// Executor created with five threads in its thread pool
ExecutorService exec =
 Executors.
 newFixedThreadPool(5);

To create a thread pool with single thread, use
newSingleThreadExecutor() method.

Handling Results

run() method of the Runnable interface cannot return result or
throw exception.
Tasks, which can return result, are instance of Callable
interface.

//tasks can return results derived from Callable using call method
public interface Callable<V> {
 V call() throws Exception;
}

submit() returns Future object which helps to track task.

// ExecutorService example
public class ExecService {
 public static void main(String[] args)
 throws ExecutionException,
 InterruptedException {
 // Create executor with five threads
 // in its thread pool.
 ExecutorService exec =
 Executors.newFixedThreadPool(5);
 // Submit the callable task to executor
 Future<String> task =
 exec.submit(
 new Callable<String>() {
 @Override
 public String call()
 throws Exception {
 //some logic
 return null;
 }
 });
 // waits for result
 String result =
 task.get();
 // Shutdown executor
 exec.shutdown();
 }
}

If there is any exception during the task execution, calling get()
method on the ExecutorService will throw an instance of
ExecutionException.

Scheduling Task

ScheduledExecutorService can be used to schedule a task to
run in future.

Methods to schedule task.

 • schedule(
 task,
 delayTime,
 TimeUnit.SECONDS)
 • scheduleAtFixedRate(
 task,
 delayTime,
 repeatPeriod,
 TimeUnit.SECONDS)
 • scheduleWithFixedDelay(
 task,
 delayTime,
 fixedDelay,
 TimeUnit.SECONDS);

ExecutorCompletionService

ExecutorCompletionService uses Executor to execute the task.
CompletionService of Executor can be used to get results from
multiple tasks.
ExecutorCompletionService provides concrete implementation
for CompletionService.

// Create executor with five threads
ExecutorService es =
 Executors.newFixedThreadPool(5);

// ExecutorCompletionService returns an object
ExecutorCompletionService<Result> cs =
 new ExecutorCompletionService<>(es);
// submit task to ExecutorCompletionService
cs.submit(longTask);
// get the result of task
Future<Result> completedTask =
 cs.take();

Notes

Always associate context-based names to the threads, it
immensely helps in debugging.
Always exit gracefully, by calling
either shutdown() or shutdownNow() based on your use case.
Configure thread pool for the ExecutorService such that the
number of threads configured in the pool are not significantly
greater than the number of processors available in the system.
You should query the host to find the number of processor to
configure thread pool.

Runtime.getRuntime().
 availableProcessors();

Questions
Explain ExecutorService?
How can you track progress and status of executing task?
Does Executor service use dedicated threads to execute
queued tasks?
Can you use Runnable object with the ExecutorService? Why?
How do you find if an exception is thrown in the
ExecutorService?
Can you schedule a task to run in future with the
ExecutorService?
With ExecutorService, how can you get results from multiple
tasks?
What is the difference between submit() and execute() methods
of ExecutorService?

If you use submit(), you can get any exception thrown by
calling get() method on Future; whereas, if you use
execute(), exception will go to UncaughtExceptionHandler.

How can you exit gracefully from ExecutorService?
What should be the criteria for configuring thread pool size?
How can you set that?

Fork-Join

Fork-Join framework takes advantage of multi-processors and
multi-cores systems.
It divides the tasks into sub-tasks to execute in parallel.
fork() method spawns a new sub-task from the task.

// spawn subtask
subTask.fork();

join() method lets the task wait for other task to complete.

// wait for subtask to complete
subTask.join();

Important classes in Fork-Join
ForkJoinPool - thread pool class is used to execute
subtasks.
ForkJoinTask - manages subtask using fork() and join()
methods.
RecursiveTask - task that yields result.
RecursiveAction - task that does not yield result.

Both, RecursiveTask and RecursiveAction provides abstract
compute() method to be implemented by the class, whose
object represents the ForkJoin task.

Questions
Explain Fork-Join framework in Java?
How Fork-Join framework helps to optimize task execution?
What is the difference between RecursiveTask and
RecursiveAction?

REFLECTION

Reflection

Reflection is used to examine the code runtime and possibly modify
the runtime behaviour of an application.

Purpose of reflection

Reflection must be used only for special purpose problem solving
and only when information is not publicly available. Class members
are marked private for reasons. Few of the popular usage of
reflection in day to day development includes following:

Reflection facilitates modular software development by
investigating code and libraries at runtime, to plugin classes and
components.

Annotations are read using reflection. JUnit uses reflection to
discover methods to setup and test.
Debuggers uses reflection to read private members of the class.
IDEs use reflection to enumerate class members and probe
code.
Object relational mappers use reflection to create objects from
data.
Dependency Injection framework like Spring uses reflection to
resolve dependencies.

Usage
The code below demonstrates use of reflection to access private
field of class Account.

public class Account {
 private float rate = 10.5f;
}

public static void main(String [] args)
 throws IllegalAccessException {

 Account account = new Account();
 Class<? extends Account> refClass =
 account.getClass();

 // get all the field
 Field [] fields =
 refClass.getDeclaredFields();

 for(Field field : fields){
 // no more private
 field.setAccessible(true);
 print(field.get(account));
 }

Questions
What is reflection?
What are the different scenarios where reflection can be used?
How does debuggers use reflection?
How does reflection helps in creating modular software
architecture?
Can you access private members using reflection?
Give some examples, where reflection is used by libraries, tools
and frameworks?

Drawbacks of reflection

Reflection must be used only when something is not publicly
available and there is a very compelling reason; otherwise you must
review your design.

Drawbacks

Reflection does not have compile time checking, any change in
member's name will break the code.
Reflection violates encapsulation as it reveals the internal data
structures.
Reflection violates abstraction as it reveals the internal
implementation and provides an ability to bypass validations
applied to the members.
Reflection is slow, as it has additional overhead at runtime to
resolve the members.

Questions
When should you use reflection?
How does reflection violates encapsulation?
How does reflection violates abstraction?
Why reflection is considered slow?
Why reflection code is considered fragile and can break?

DATA
INTERCHANGE

JSON

JavaScript Object Notation, or JSON has become extremely popular
for the data interchange in the last few years. Now it's not just an
alternative to XML but is a successor to it. With the evolution of Big
Data and Internet of Things, along with JSON's ability to be easily
parsed to JavaScript object, it has become preferred data format for
integration with the web. Following are the few primary factors
behind this.

It's interoperable, as it's restricted to primitive data types only.
It's lightweight and less verbose than XML.
It's very easy to serialize and transmit structured data over
network.
Almost all modern languages support it.
JavaScript parser in all the popular web browsers supports it.

JSON Structures
JSON structures can be categorized as JSON Object and JSON
array.

JSON Object

JSON object is simply a name-value pair separated by a comma.
Name is always a string.

JSON Array

JSON Array is an ordered collection of values. Value can be a string,
a number, an object or an array itself.

Questions
What is JSON?
What is the main reason for JSON's popularity?
What are significant differences between JSON and XML data
formats?
Why JSON has become preferred format for data interchange?
Explain the difference between JSON Object and JSON Array?

MEMORY
MANAGEMENT

Stack vs Heap

Stack is memory associated with each system thread when it's
created; whereas, heap is shared by all the threads in an
application.
For each function the thread visits, a block of memory is allotted
on the top of stack - for local variables and bookkeeping data,
which gets freed when that function returns, in a LIFO order. In
contrast, the allocation of memory in Heap is relatively random
with no enforced pattern, and variables on heap are destroyed
manually.
When the thread exists, stack associated with the thread is
reclaimed. When the application process exists, heap memory is
reclaimed.
Allocating and freeing stack memory is simpler and quicker, it's
as simple as adjusting pointers. Allocating and freeing memory is
comparatively complex in Heap, as there is no fixed pattern of
memory allocation.
The stack memory is visible only to the owner thread, so memory
access is straight forward. Heap memory is shared across
multiple threads in application; synchronization with other thread
has performance consequences.
When stack memory is exhausted, JVM throw
StackOverFlowError; whereas, when heap space is exhausted,
JVM throws OutOfMemoryError.

Memory allocation in stack and heap

In this example, stack and heap memory allocation is depicted, when
a method createPoint is invoked.

num1 and num2 variables are stored in stack.
Reference point variable is stored in stack.
Object of class Point is stored in heap.

Questions
What is stack?
What is heap?

How is memory allocated and de-allocated in stack, during its
lifecycle?
When does the stack memory gets released?
When does the heap memory gets released?
Why memory allocation in stack is faster as compared to heap?
Why do you need to apply synchronization to the heap memory
and not to the stack memory?
What exception do you get when stack memory is exhausted?
What exception do you get when heap memory is exhausted?
Do you need to explicitly release the objects on stack?

Heap Fragmentation

Heap fragmentation happens when a Java application allocates and
de-allocated small and large blocks of memory over a period of time,
which leads to lots of small free blocks of memory spread between
used blocks of memory. This may lead to a situation when there is
no space left to allocate a large block of memory, even though the
cumulative size of entire small free blocks is more than the required
memory for the large block.

Heap fragmentation causes long Garbage Collection cycle as JVM is
forced to compact the heap. Avoiding allocating large block of
memory, by increasing heap size, etc, can control heap
fragmentation.

Questions
What is heap fragmentation?
Why does heap fragmentation happens?
Who has the responsibility to reduce heap fragmentation?
How can you control heap fragmentation?
What happens when there is very high level of heap
fragmentation?
Why does heap fragmentation slows down the application?

Object Serialization

Converting the content of an in-memory object into bytes to either
persist it or to transfer, is called object serialization. These bytes can
be converted back to object by de-serializing it.

In Java, an object is serializable if its class implements
java.io.Serializable or its sub-interface java.io.Externalizable.
Members marked as transient are not serialized. ObjectInputStream
and ObjectOutputStream are stream classes specifically used to
read and write objects.

Questions
What is serialization and de-serialization?
Which interface needs to be implemented by the type that wants
to support serialization?
How can you prevent a member from serialization?
Which classes in Java are used to serialize and de-serialize
objects?

Garbage Collection

Garbage Collection in Java is the process to identify and remove the
un-referenced objects from the memory and also move the
remaining objects together to release contiguous block of memory.
When Garbage collection happens, all the running threads in the
application are suspended during the collection cycle. Garbage
Collector run on a Daemon thread.

Moving all the surviving objects together reduces memory
fragmentation, which improves the speed of memory allocation.

During Garbage Collection cycle, objects are moved to different
areas in memory, known as generations, based on their survival age.

System class exposes method gc(), which can be used to request
Garbage Collection. When you call System.gc(), JVM does not
guarantee to execute garbage collection immediately, but may
perform when it can. You can also use Runtime.getRuntime().gc() to
request Garbage Collection.

Questions
What is Garbage Collection?
Explain Garbage Collection cycle?
Why Garbage Collection is considered expensive process?
Why after Garbage Collection cycle, usually the performance of
the application improves?
How does Garbage Collection prevents
OutOfMemoryException?
Which type of thread is used for Garbage Collection: Daemon or
user thread?
What is memory fragmentation?

Why does application seems to slow down when Garbage
Collection happens?
Can you explicitly request a Garbage Collection?
Which method can you call to request Garbage Collection?
Does Garbage Collection always happen when requested?

Memory Management

JVM memory is divided into two major categories, stack memory and
heap memory.

Stack Memory

Stack memory is associated with each system thread and used
during execution of the thread. Stack contains local objects and the
reference variables defined in the method; although the referenced
objects are stored in heap. Once the execution leaves the method, all
the local variables declared within the method are removed from the
stack.

Heap Memory

Heap Memory is divided into various regions called generations:

New Generation - It's divided into Eden and Survivor space. Most
of the new objects are created in Eden memory space.
Old Generation
Metaspace

When new generation is filled, it triggers garbage collection. Objects
that survive this GC cycle in Eden are moved to the Survivor space.
Similarly after few cycles of GC, the surviving objects keeps moving
to old generation.
Metaspace is used by JVM to keep permanent objects, mostly the
metadata information of the classes. New generations are more
frequently garbage collected than the old generations.

New Gen and Old Gen are part of heap whereas Metaspace is
part of Native memory.
Metaspace can expand at runtime, as it's part of native memory.

When Garbage collection happens, all the application threads are
frozen until GC completes its operation. Garbage collection is
typically slow in old generation; so if lots of Garbage Collection
happens in old generation, it may lead to timeout error in the
application.

Questions
How is Heap memory divided?
Explain different generations of heap memory? How objects are
moved across generations?
How is garbage collection cycle triggered?
What are Eden and Survivor spaces in New Generation
memory?
When does the objects in Eden moves to Survivor space?
What is Metaspace?
What type of objects are stored in Metaspace?
Why Metaspace has virtually unlimited space?
In which generation does the Garbage Collection cycle runs
slowest? Why?
Which generation is more frequently garbage collected?

Weak vs Soft vs Phantom Reference

If an object in memory has a reference then the garbage collector
will not collect it. This principle is not true for Weak and Soft
references.

Weak Reference

Weak reference is a reference that eagerly gets collected by the
garbage collector. Weak references are good for caching, which can
be reloaded when required.

Soft Reference

Soft reference is slightly stronger than the Weak Reference, as these
are collected by garbage collector only when there is a memory
constraint. Soft references are generally used for caching re-
creatable resources like file handles, etc.

Phantom Reference

Phantom reference is the weakest reference in Java. It is referenced
after an object has been finalized, but the memory is yet to be
claimed by the Garbage collector. It is primarily used for technical
purpose to track memory usage.

Questions
What is weak reference?
What is soft reference?
What is Phantom Reference?
What are the reference types that gets collected by the Garbage
Collector, even when the objects of their types are still in use?

What is the difference between soft reference and weak
reference?
What is the typical usage of weak reference?
What is the typical usage of soft reference?
What is the typical usage of Phantom reference?
Which is collected first: soft reference or weak reference?

UNIT TESTING

Why Unit Testing?

Two most important reasons

You can understand the real benefits only by doing it
yourselves.

Unit test helps you to sleep well at night.

Other important reasons

Unit tests provide immediate and continuous feedback on the
success/failure for the changes made to the code.
Units test increases the confidence to make big changes without
worrying about breaking any existing feature.
Unit test helps you to understand the internals of the code and
design.
Unit tests also serves as documentation on various coding
scenarios.
Unit test saves time in longer run by reducing the multiple cycles
of manual verification of different scenarios.

Questions
What are the benefits of unit testing?
How does unit testing saves time in long run?
How can you use unit testing to document the coding
scenarios?

Unit vs Integration vs Regression vs
Validation Testing

Unit

Unit testing is continuously done while writing the code; to get
immediate feedback to the smallest testable change made. Smallest
testable unit can span across methods or classes, but must exclude
external dependencies like File I/O, Databases, Network Access,
etc.

Integration

Integration testing is done to test end to end integration when all the
changes made for a scenario or a feature is completely
implemented.

Regression

Regression testing are series of tests performed on entire software
to uncover bugs in both functional and non-functional areas.
Regression testing is usually done after enhancements, software
updates, etc.

Validation

Validation testing is generally performed after updating or deploying
the software, to verify that the changes are made as per the
requirements.

Questions
What is unit testing?

What is integration testing?
What is regression testing?
What are the differences between integration and regression
testing?
What is validation testing?

Testing Private Members

Private members can be tested using reflection, but its advisable to
do so only when you need to test some legacy code, where
changing visibility of private method is not allowed.

Usage
The code below demonstrates use of reflection to access private
field of class Account.

public class Account {
 private float rate = 10.5f;
}

@Test
public void testConcatenate() throws
 IllegalAccessException,
 NoSuchFieldException {

 Account account = new Account();
 Class<? extends Account> refClass =
 account.getClass();
 Field field =
 refClass.getDeclaredField("rate");
 field.setAccessible(true);

 assertEquals(10.5f, field.get(account));
}

As mentioned, its not advisable to access private fields using
reflection; you have following alternate options to test code in a
private method:

Test the private method through public method.
Change the access modifier of the field, if possible.
Change the class design.

Questions
What are the different ways to test private members?
Can you use Reflection to test private members?
Why you shouldn't use reflection to test private members?
What are the alternate ways to test private members?

Mocking

Primary responsibility of a unit test is to verify the conditional logic in
the class code, which should run super fast for an immediate
feedback. To enable an immediate feedback, it's necessary that
class has no external dependencies; which is not practical in object
oriented software development, where you need to communicate
with the external objects to perform File IO, manage database
access, communicate with web service, etc. So the basic idea of
mocking is to replace these external dependencies with mock
objects, to isolate the object under test.

Benefits of mocking

Mock object helps you to isolate and test only the conditional
logic in the class without testing its dependencies.
In mock object, you can implement partial functionality required
for the test without implementing the complete dependency
object.
You don't need to worry about understanding the internals of
dependency, which helps in faster development time.

Questions
What are mock objects?
What are the benefits of using mock objects?
Why mock objects helps to speed up the tests?
How does mocking helps to achieve faster development cycle?
What are the types of dependencies that you should replace
mock objects with?

JAVA
TOOLS

Git

Git is source code management systems. Its distributed version
control system (DVCS), which facilitates multiple developers and
teams to work in parallel. Git's primary emphasis is on providing
speed while maintaining data integrity.

Git also provides ability to perform almost all the operations offline,
when network is not available. All the changes can be pushed to the
server on network's availability.

Let's discuss few terms that are frequently used:
Repository - is directory that contains all the project files.
Clone - it creates a working copy of local repository.
Branch - is created to encapsulate the development of new features
or to fix bugs.
HEAD - points to the last commit.
Commit - commits changes to HEAD and not to remote repository.
Pull - Gets the changes from the remote repository to the local
repository.
Push - Commits the local repository changes to the remote repository.

Git Workflow Structure

Questions
What is distributed version control systems?
Why do you use version control system?
What are the typical activities you perform with version control
system?
Explain the branching strategy you follow?

Maven

Maven is software project management framework that manages
project build, dependency resolution, testing, deployment, reporting,
etc. Maven is based on conventions rather than elaborate
configurations; that is, if the project is laid out as per the prescribed
conventions, as depicted in the image below, then it will be able to
find the resources to perform different build operations.

Maven is managed by pom.xml (also known as Project Object
Model) file, which facilitates defining various tasks (or goals) and
also has a dedicated section to specify various project
dependencies, which are resolved by Maven.

Questions

Why do you need framework for dependency resolution, you
can manually download the files and add reference?
What all things does Maven support?
Why Maven is said to be convention based?
What is the meaning of goals in Maven?

Ant

Ant is powerful XML based scripting tool for automating the build
process. An automated build infrastructure is very important element
in the Continuous Integration cycle.

Ant provides support for things like code compilation, testing and
packaging, which can be defined as a series of task. Unlike Maven,
Ant is driven by configuration and not convention. Similar to goals in
Maven, you can define Targets in Ants, which are series of tasks. Ant
depends on file build.xml (you can specify different name too) to
execute the targets defined.

Questions
What is Ant tool used for?
What all things does Ant support?
What are differences between Ant and Maven?
What is the meaning of Targets in Ant?

Jenkins

Continuous Integration

Continuous Integration is a practice where the developers, who are
working in parallel on the same code repository, merge their changes
frequently. Every checkin is followed by series of automated
activities, which aims to validate the changes in the checkin. Typical
automated activities following the checkin are:

Fetching changes from repository,
Performing automated build.
Execute different tests like unit, integration, validations, etc.
Deploy the changes.
Publish the results.

Jenkins

Jenkins is open source web based tool to perform continuous
integration. Jenkins provides configuration options to configure and
execute all the above-mentioned activities. Configuration options that
are available are: configuring JDK, security, Build Script; integration
with Git, Ants, Maven, Gradle, etc.; deployment, etc.

The execution of jobs can be associated with some event or can be
based on time based scheduling.

Questions
What is Continuous Integration?
What are the different activities that Continuous Integration
framework should support?

Explain capabilities of Jenkins to support Continuous
Integration?
How do you integrate third party tools with Jenkins?

	Title Page
	Content
	Introduction
	Book Introduction

	Java Fundamentals
	Java Program Anatomy
	Java Program and JVM
	Data Types
	Object class
	Access Modifiers
	static
	final
	static initialization block
	finally()
	finalize()
	Widening vs Narrowing Conversion
	getters and setters
	varargs vs object array
	default interface method
	static interface method
	Annotations
	Preferences
	Pass by value or reference
	Naming Convention

	Object Oriented Programming
	Polymorphism
	Parametric Polymorphism
	Subtype Polymorphism

	Overriding
	@Override

	Overloading
	Abstraction
	Inheritance
	Composition

	Fundamental Design Concepts
	DI vs IoC
	Service Locator
	Diamond Problem
	Programming to Interface
	Abstract class vs Interface
	Internationalization and Localization
	Immutable Objects
	Cloning

	Data Types
	NaN
	EnumSet
	Comparing Data Types
	Float comparison
	String comparison
	Enum comparison

	enum vs public static int field
	Wrapper Classes
	Auto boxing and Auto unboxing
	BigInteger and BigDecimal

	Strings
	String Immutability
	String Literal vs Object
	String Interning
	String Pool Memory Management
	Immutability - Security issue
	Circumvent String immutability
	StringBuffer vs StringBuilder
	Unicode

	Inner Classes
	Inner Classes
	Static Member Nested Class
	Local Inner Class
	Non-Static Nested Class
	Anonymous Inner Class

	Functional Programming
	Functional Interface
	Lambda Expression
	Pure Functions
	Fluent Interface

	Generics
	Generics
	Generics-Type Wildcards
	Generics - Method
	Java Generics vs Java Array
	Generics - Type Erasure
	Co-variance
	Contra-variance
	Co-variance vs Contra-variance

	Collections
	Collection design aspects
	Collection Fundamentals
	Collection Interfaces
	Collection Types
	Set
	List
	Queue
	Map

	Algorithms
	Comparable vs Comparator
	hashCode() and equals()
	hashCode() and equals()
	HashTable vs HashMap
	Synchronized vs Concurrent Collections
	Iterating over collections
	fail-fast vs fail-safe

	Error and Exception
	Exception
	Checked vs Unchecked vs Error
	Exception Handling Best Practices
	try-with-resource

	Threading
	Threading Terms
	Thread Lifecycle
	Thread Termination
	Runnable vs Thread
	Runnable vs Callable
	Daemon Thread
	Race Condition and Immutable object
	Thread Pool

	Synchronization
	Concurrent vs Parallel vs Asynchronous
	Thread Synchronization
	Synchronized method vs Synchronized block
	Conditional Synchronization
	Volatile
	static vs volatile vs synchronized
	ThreadLocal Storage
	wait() vs sleep()
	Joining Thread
	Atomic Classes
	Lock
	ReadWriteLock

	Synchronizers
	Barrier
	Semaphore
	Phaser
	Exchanger
	Latch

	Executor Framework
	Executor Service

	Fork-Join Framework

	Reflection
	Purpose of reflection
	Drawbacks of Reflection

	Data Interchange
	JSON

	Memory Management
	Stack vs Heap
	Heap fragmentation
	Object Serialization
	Garbage Collection
	Memory Management
	Weak vs Soft vs Phantom Reference

	Unit Testing
	Why unit testing?
	Unit vs Integration vs Regression vs Validation
	Testing private members
	Mocking and Mock Objects

	Java Tools
	Git
	Maven
	Ant
	Jenkins

